Track D: RIDING THE WAVE OF POWER EVOLUTION THE UNTOLD CHARACTERISTICS OF HIGH VOLTAGE PROBES

Oscilloscope Senior Engineer Andy Lin

ROHDE&SCHWARZ

Make ideas real

AGENDA

- Typical measurements on power electronics
- Overview of voltage Probes
- Characteristics of high voltage probes
- Untold characteristics in specifications
- Untold characteristics in setup
- Optimizing the best results with probes

TYPICAL MEASUREMENTS ON POWER ELECTRONICS

TYPICAL MEASUREMENTS ON POWER ELECTRONICS

Basic circuit for inverter/unfolder, sync buck converter/resonant (LLC) converter, sync boost converter consists of a so called high-side and low-side switch

- ► DC-Offset of high-side switch has to be considered by design of measurement setup
- Floating measurement on high-side switch is necessary

😵 Rohde & Schwarz

ELECTRICAL MEASUREMENT SAFETY POWER RATING CATEGORY

Rated	UL 61010B – 1 (Transient)		IEC 61010-1 (Transient)			
Voltage	I	II	Ш	II	ш	IV
150V	800V	1500V	2500V	1500V	2500V	4000V
300V	1500V	2500V	4000V	2500V	4000V	6000V
600V	2500V	4000V	6000V	4000V	6000V	8000V
1000V	4000V	6000V	8000V	6000V	8000V	12000V
Resistance	30 ohm	12 ohm	2 ohm	12 ohm	2 ohm	2 ohm

Lugo SWR: Electrical arc from power lines, by Neil Brady, 2013. Retrieved from www.youtube.com

Nuclear Power Plant. Retrieved from www.gifphy.com

Power category is relative!

🗞 Rohde & Schwarz

OVERVIEW OF VOLTAGE PROBES

TYPES OF VOLTAGE PROBES

1 MΩ Oscilloscope	1:1 Passive Probe	Low Speed, low level signals	
Input Impedance	10:1 Passive Probe	General purpose	
Passive probes	100:1, 1000:1 Passive Probe	High voltage e.g. some kV	
50 Ω Oscilloscope	50 Ω Passive transmission Line probes	High Bandwidth (some GHz)	
Input Impedance	Single-ended Input	High Speed, low load	
Active probes	Differential High Voltage:	differential voltage at high potential	
	High Speed:	LVDS, high speed serial	

SINGLE-ENDED PASSIVE PROBES

- ► 250 MHz and 400 MHz
- ▶ Up to 1000 V (RMS) and 6000 V (peak)
- ► BNC Interface
- BNC interface fits to all scopes / applications
- Cost-effective solution

GENERAL PURPOSE HIGH-VOLTAGE DIFFERENTIAL PROBES

- ▶ 25 MHz and 100 MHz Bandwidth
- ► 750 Vpeak and 1400 Vpeak input voltage
- ► BNC Interface
- BNC interface fits to all scopes / applications
- Cost-effective differential solution

HIGH-VOLTAGE DIFFERENTIAL PROBES – RT-ZHD FAMILY

- ▶ 100 MHz and 200 MHz models
- ► 750 V, 1500 V and 6000 V Input Voltage Range
- ► Up to 2000 V Offset Compensation
 - Independent of probe attenuation factor or vertical scale on oscilloscope
- ► Excellent DC Accuracy: 0.5%
 - Integrated DC Voltmeter with 0.1% Accuracy
 - Very low drift
- Very low noise

► High CMRR

- 80 dB @ DC 60 Hz
- 60 dB @ 1 MHz
- 30 dB @ 100 MHz

Overrange Indicator,

integrated 5 MHz low pass filter, R&S probe interface

🛞 Rohde & Schwarz

ISOLATED CHANNEL OSCILLOSCOPE – RTH FAMILY

- 60 MHz, 100 MHz, 200 MHz, 350 MHz and 500 MHz models
- Unique combination of channel isolation for up to 1000 Vrms and 500 MHz bandwidth
- ► Isolated channels \rightarrow no need for differential probes
- CAT IV 600 V, CAT III 1000 V with R&S®RT-ZI10 or R&S®RT-ZI11 probe
- ► High CMRR > 100 dB @ DC 100 kHz
- Up to 16 bit vertical resolution with High resolution mode

Rohde & Schwarz

PROBING OPTIONS FOR DIFFERENT VOLTAGE LEVELS

Rohde & Schwarz

CHARACTERISTICS OF HIGH VOLTAGE PROBES

BANDWIDTH & RISE TIME

Rohde & Schwarz

BANDWIDTH & RISE TIME & SLEW RATE

Bandwidth

Frequency range over which the frequency response of a signal degrades by 3 dB

Rise time

Transition time for a signal to go from the 10% to the 90% level of the steady maximum value

It is derived by considering a first-order passive filter and calculating its step-response in frequency and time domain.

$$SR = \frac{V_{10-90}}{t_r}$$

the maximum input frequency and amplitude applicable to an amplifier, or large-scale signals

It helps to identify peak current:

 $I_{peak} = SR * Capacitance$

MEASUREMENT EXAMPLE: RISE TIME / SLEW RATE

- Step signal: 1 kV
- Measured using R&S®RT-ZHD (high-voltage differential probe)

- Sufficient bandwidth to measure rise time & slew rate:
 - Rise time: 12 ns

Rohde & Schwarz

- Slew rate: 61 V/ns

R&S[®]RT-ZHD07 high voltage differential probe

All parameters are valid when the probe is connected to an appropriate Rohde & Schwarz oscilloscope with an input impedance of 1 MΩ See table on page 4 and Rohde & Schwarz oscilloscope operating manual for more details.

Attenuation setting				25	:1	250:1	
Step response							
Rise time	10 % to 90 %, bo	oth attenuations		< 2	2 ns		
Frequency response							
Bandwidth	starting at DC, ca	alculated from 0	.4/rise time	20	0 MHz		
						+	
200 V							
-400 V							
	, <u>_</u>						
	Current	C s	40 ns	80 ns	120 ns	160 ni	
Meas 1 🧧							
Rise time	12.818 ns	mu (Avg)	RMS	StdDev	Event count	Wave count	
Slew rate	61.427	12.822 ns	12.823 ns	106.01 ps	1668	1668	
	STITE?	01.409	01.411	507.20	1668	1668	

UNTOLD CHARACTERISTICS IN SPECIFICATIONS

LOOK INTO DATASHEET

Model overview

Probes with the

Attenuation	25X / 250X	50X / 500X
Differential Voltage	250X: ±750 V 25X: ±75 V	500X: ±1500 V 50X: ±150 V
Common Mode Voltage	±750 V	±1500 V
Maximum Input Voltage-to-Earth	550 V CAT I 300 V CAT III	1000 V CAT II 600 V CAT III
Bandwidth	200 MHz	200 MHz
Rise Time	<1.8 ns	<1.8 ns
Slew Rate	<275 V/ns at 1/250 gain	<650 V/ns at 1/500 gain
Input Impedance at the Probe Tip	5 MΩ <2 pF	10 MΩ <2 pF
Typical CMRR	DC: > -80 dB 100 kHz: > -60 dB 3.2 MHz: > -30 dB 100 MHz: > -26 dB	DC: > -80 dB 100 kHz: > -60 dB 3.2 MHz: > -30 dB 100 MHz: > -26 dB
Cable Length	1.5 m	1.5 m

R&S®RT-ZHD07 high voltage differential probe

All parameters are valid when the probe is connected to an appropriate Rohde & Schwarz oscilloscope with an input impedance of 1 MΩ. See table on page 4 and Rohde & Schwarz oscilloscope operating manual for more details.

Attenuation setting		25:1	250:1		
Step response					
Rise time	10 % to 90 %, both attenuations	< 2 ns			
Frequency response	·				
Bandwidth	starting at DC, calculated from 0.4/rise time	200 MHz			
Common mode rejection	DC to 60 Hz				
	+15 °C to +35 °C > 80 dB				
	0 °C to +50 °C > 75 dB				
	60 Hz to 1 kHz	70 dB (meas.)	65 dB (meas.)		
	1 kHz to 1 MHz	55 dB (meas.)	55 dB (meas.)		
	1 MHz to 50 MHz	35 dB (meas.)	20 dB (meas.)		
Input impedance					
DC input resistance	differential (between signal sockets)	5 MΩ			
	single-ended (each signal socket to ground)	2.5 MΩ			
Input capacitance	differential (between signal sockets)	2.5 pF (meas.)			
	single-ended (each signal socket to ground)	5 pF (meas.)			
Dynamic range					
Differential input	between signal sockets	±75 V	±750 V		
Offset compensation range	in both attenuations	±1000 V			
Offset compensation error	offset compensation setting = 0 V	no additional error	r		
	offset compensation setting ≠ 0 V	±0.2 % of setting :	±40 mV (meas.)		
Operating voltage window	each signal socket to ground	±750 V			
Noise voltage	referenced to probe input	12 mV (RMS)	40 mV (RMS)		
		(meas.)	(meas.)		
Maximum rated input voltage					
Continuous voltage	derated, see figure, each signal socket to ground	300 V (RMS), CAT III			
		600 ∨ (RMS), CAT II			
		600 V (RMS)			
Transient voltage	ransient voltage each signal socket to ground ±4500 ∨ (peak)				
Base unit					
Input coupling	AC/DC	1 MΩ			

Specifications may look very close and most vendors will have similar information included

DERATING

► Some characteristics are specified in DC, which changes in higher frequencies

NOT ALL SPECS ARE LINER PLOT

► While the datasheets only include a few key frequencies characteristics, reality is different

Common mode rejection	DC to 60 Hz			
	+15 °C to +35 °C	> 80 dB		
	0 °C to +50 °C	> 75 dB		
	60 Hz to 1 kHz	70 dB (meas.) 65 dB (meas.)		
	1 kHz to 1 MHz	55 dB (meas.) 55 dB (meas.)		
	1 MHz to 50 MHz	35 dB (meas.) 20 dB (meas.)		

CMRR (Attenuation 'High')

There can be a certain frequency that the probe may perform better or worse.

Take note of those and make full use of the probe performance

MEASUREMENT EXAMPLE: COMMON MODE REJECTION RATE

- ► 700 V step
- Measured with RT-ZHD
- ► High CMRR
- Suitable for high side gate measurements

NOISE VS ATTENUATION RATIO VS BANDWIDTH

► Higher attenuation ratio means higher noise

Attenuation setting		25:1	250:1
Noise voltage	referenced to probe input	12 mV (RMS)	40 mV (RMS)
		(meas.)	(meas.)

Bandwidth

- ► General rule: Less bandwidth → Less (white) noise
- Reducing the bandwidth to the needed minimum helps to improve the noise behavior
- Mostly used connectors (4 mm plug & cable) has resonant frequency ~200 MHz (or less)

Is a coaxial cable a good alternative?

Trade-offs: It has low withstand voltage Additional connector must be added to DUT design Impedance mismatch DUT to coaxial cable

Choose a good probe

😵 Rohde & Schwarz

PROBES ARE SPECIFIED WITH BEST SETUP

► Changing to longer leads and clips will change the behavior

UNTOLD CHARACTERISTICS IN SETUP

TWISTED OR UNTWISTED CABLES

Overview: Pros & Cons

Leads twisted

Usually the best option

Only recommended if the loading of probe is the biggest problem

TWISTED OR UNTWISTED CABLES

Input Capacitance

Single ended input capacitance: **RT-ZHD16** (P input to GND)

without meas. lead: 3.5 pF

	RT-ZHD16 + meas. leads	RT-ZHD16 + meas. leads + alligator clips
untwisted	9 pF	10 pF
twisted	12 pF	15 pF

Rule of thumb:

The differential input capacitance is approx. half the single ended capacitance

TWISTED OR UNTWISTED CABLES 200 MHZ BANDWIDTH

VS VS

The impulse response of the probe is optimized with twisted test leads

Higher overshoot due to twisting

For non twisting: elatively high ringing later

😵 Rohde & Schwarz

TWISTED OR UNTWISTED CABLES 100 MHZ BANDWIDTH

N

Deviation at BW: < 100 MHz relatively small

Signals with slower rise times are less influenced by the type of probing

🚸 Rohde & Schwarz

INFLUENCE OF MEASUREMENT LEADS

► Long Leads (100 cm): Max. rating 1000 V (RMS) CAT III

► Short Leads (17 cm): Max rating 1000 V (RMS) CAT III

► Test Leads : Max rating 1000 V (RMS) CAT III

LENGTH OF MEASUREMENT LEADS 200 MHZ BANDWIDTH

Negative properties of the standard measurement lines (eg.17cm) are compensated in the probe head!

Shorter or longer meas. leads cause measurement errors.

😵 Rohde & Schwarz

LENGTH OF MEASUREMENT LEADS 100 MHZ BANDWIDTH

For input signals with a rise time slower than 6 ns you can also use longer or shorter test leads

🚸 Rohde & Schwarz

Rohde & Schwarz

INFLUENCE OF CLIPS

► Test Clip: Max. rating 1000 V (RMS) CAT IV

ALLIGATOR VS PINCER CLIPS 200 MHZ BANDWIDTH

Clips have an influence on measuring accuracy especially at full bandwidth (e.g. 200 MHz)

Rohde & Schwarz

PINCER VS PINCER CLIPS DIFFERENCE 50 MHZ VS 200 MHZ BANDWIDTH

For an input signal with a rise time of 6 ns the influence of the pincer clips are negligible

Influence highly depends on the input signals rise time

😵 Rohde & Schwarz

OPTIMIZING THE BEST RESULTS WITH PROBES

COMPENSATION OF PROBE ERRORS BY BASIC DEVICE

All R&S oscilloscopes with R&S Probe Interface can compensate for probe measurement errors:

- Zero point error
- Gain error
- Cable Runtimes

The oscilloscope takes correction data from the probe and calculates them with the internal settings

Result:

Better measurement accuracy and less adjustment.

Zero point drift, offest drift and errors due to range switching are eliminated with RT-ZHD probes by DC stabilization circuit very strongly

NOISE AND ZERO POINT DRIFT

Noise

- Small vertical scaling:
 - total noise dominated by the active probe (e.g. 100 mV/ Div for RT-ZHD16)
- High vertical scaling:
 - total noise dominated by the oscilloscope (e.g. 10 V/ Div for RT-ZHD16)
- Generally, noise level depends on attenuation ratio

► Zero point drift

- Zero point drift of the active probe with no scaling dominant
 → For large scales, the base unit is dominant
- Due to the high temperature response, the zero point is too low with active probes difficult to stabilize (no active cooling)

50:1

20 mV (meas.

25 mV (meas.)

500:1

70 mV (meas.

80 mV (meas.

- Range switching with active probes can be done by easily lead to zero point errors

OFFSET COMPENSATION CHARACTERIZE SMALL VARIATIONS IN HIGH DC VOLTAGES

- Application e.g.: Ripple voltage detection on DC link
- Signal characteristics
 - ▶ 1000 V DC
 - ± 100 mV variations
 - → High vertical measurement resolution required, e.g. 200 mV/div
- RT-ZHD: Differential offset up to 2000 V
- Most differential probes cannot compensate a DC offset

CONCLUSION

Summary: Key parameters and characteristics for selecting high voltage probes

High measurement accuracy

Versatile range of applications

High DC-Offset range (e.g. +/-2000 V with 25 mV/div)

Easy operation

Control the oscilloscope via probe

High linearity and small zero error

High temperature stability

Precise voltage measurements (0.1% via R&S®ProbeMeter)

Measurements in CAT III conditions

DC common mode voltage always readable (R&S®ProbeMeter)

Automatic divider setting and overvoltage display

Rohde & Schwarz Technology Symposium 2021 THANK YOU

For more information: www.rohde-schwarz.com

ROHDE&SCHWARZ

Make ideas real

