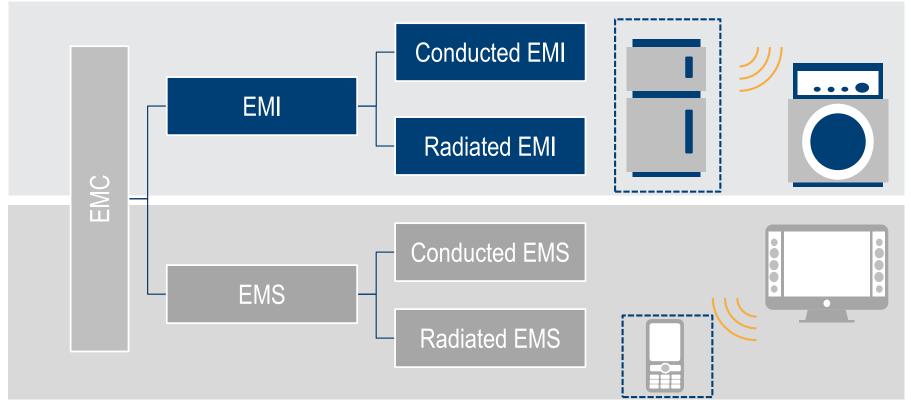
EMI ANALYSIS ON POWER SUPPLY DESIGN

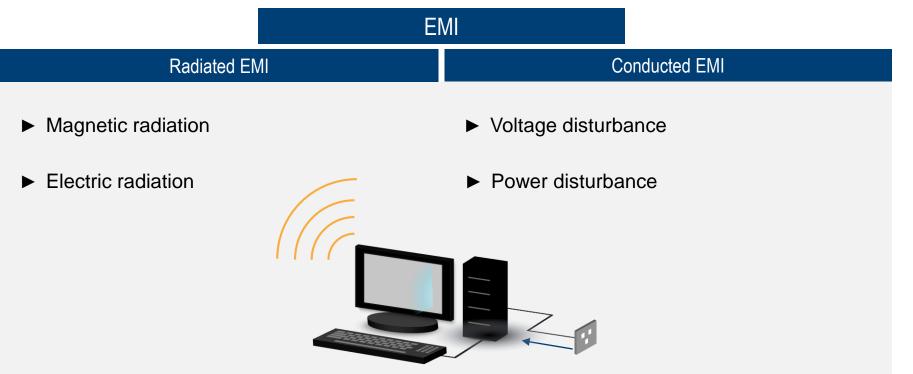
Tommy Chen Application Engineer Oscilloscope

ROHDE&SCHWARZ

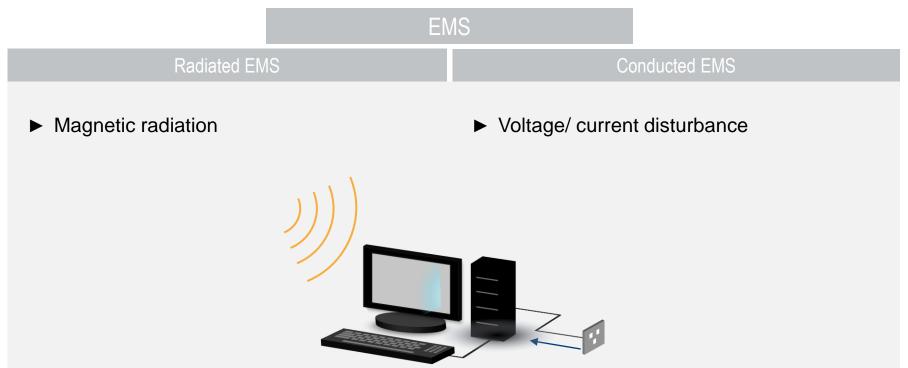
Make ideas real


COMPANY RESTRICTED

OBJECTIVE


- ► To have general idea about EMC testing, standards and limits
- To understand EMC challenges specific to power electronics designs in particular in the view of new semiconductor technologies like SiC or GaN devices
- To understand the basic EMC debugging process and instruments used in different design phases
- ► To learn about how to use oscilloscopes during the design phase to debug EMI problems
- Case Study

BASIC INTRODUCTION TO EMC AND EMC STANDARDS


WHAT IS EMC?

MODES OF EMISSION

MODES OF SUSCEPTIBILITY

STANDARDS

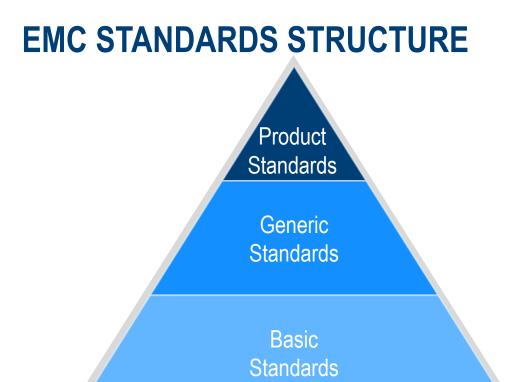
International Organization for Standardization (ISO)

Federal Communications Commission (FCC)

China Compulsary Certification (GB - GuoBiao)

Rohde & Schwarz

International Electrotechnical Commission (IEC)


Comité International Spécial des Perturbations Radio (CISPR)

European Committee for Electrotechnical Standardization (CENELEC)

Bureau of India Standards (BIS)

Measurement methods and limits, adjusted to respective product group (e.g. CISPR 11/15/32)

Applied when no product standards present and are divided by operation environment of EUT (e.g. IEC 61000-6-x)

Basic requirement on measurement methods and limit levels (e.g. CISPR 16-1-1, CISPR 16-2-3)

CISPR SUB-COMMITTEES

CISPR EMI STANDARDS (COMMERCIAL PRODUCTS)

Multimedia Equipment

DIFFERENT EMC STANDARDS

► FCC Part15

	Conc	lucted Emissions	
	Frequency	Quasi-Peak Limit	Average Limit
	(MHz)	(dBuV)	(dBuV)
Class A	0.15 - 0.5	79	66
	0.5 - 30.0	73	60
Class B	0.15 - 0.5	66 to 56 *	56 to 46 *
	0.5 - 5	56	46
	5 - 30	60	50

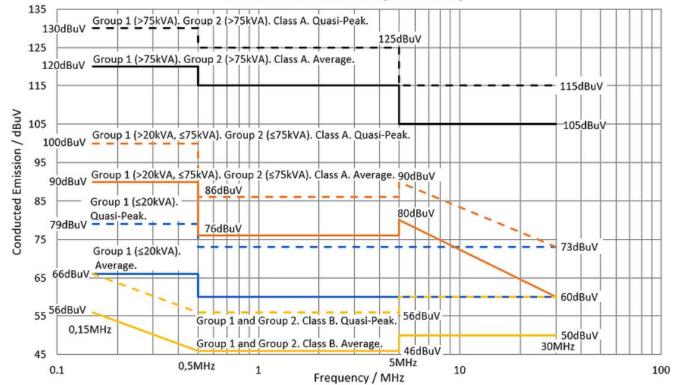
G	eneral Radiated Emissior	ו
	Frequency (MHz)	Field Strength Limit (uV/m)
Class A (10 meters)	30 - 88 88 - 216 216 - 960 above 960	90 150 210 300
Class B (3 meters)	30 - 88 88 - 216 216 - 960 above 960	100 150 200 500

► MIL-STD-461E

Req't	Description
CE101	Conducted Emissions, Power Leads, 30 Hz to 10 kHz
CE102	Conducted Emissions, Power Leads, 10 kHz to 10 MHz
CE106	Conducted Emissions, Antenna Terminal, 10 kHz to 40 GHz
CS101	Conducted Susceptibility, Power Leads, 30 Hz to 50 kHz
CS103	Conducted Susceptibility, Antenna Port, Intermodulation, 15 kHz to 10 GHz
CS104	Conducted Susceptibility, Antenna Port, Rejection of Undesired Signals, 30 Hz to 20 GHz
CS105	Conducted Susceptibility, Antenna Port, Cross Modulation, 30 Hz to 20 GHz
CS109	Conducted Susceptibility, Structure Current, 60 Hz to 100 kHz
CS114	Conducted Susceptibility, Bulk Cable Injection, 10 kHz to 200 MHz
CS115	Conducted Susceptibility, Bulk Cable Injection, Impulse Excitation
CS116	Conducted Susceptibility, Dampened Sinusoidal Transients, Cables & Power Leads, 10 kHz to 100 MHz
RE101	Radiated Emissions, Magnetic Field, 30 Hz to 100 kHz
RE102	Radiated Emissions, Electric Field, 10 kHz to 18 GHz
RE103	Radiated Emissions, Antenna Spurious and Harmonic Outputs, 10 kHz to 40 GHz
RS101	Radiated Susceptibility, Magnetic Field, 30 Hz to 100 kHz
RS103	Radiated Susceptibility, Electric Field, 10 kHz to 40 GHz
RS105	Radiated Susceptibility, Transient Electromagnetic Field

DIFFERENT EMC STANDARDS

► EU Standard (Emission)

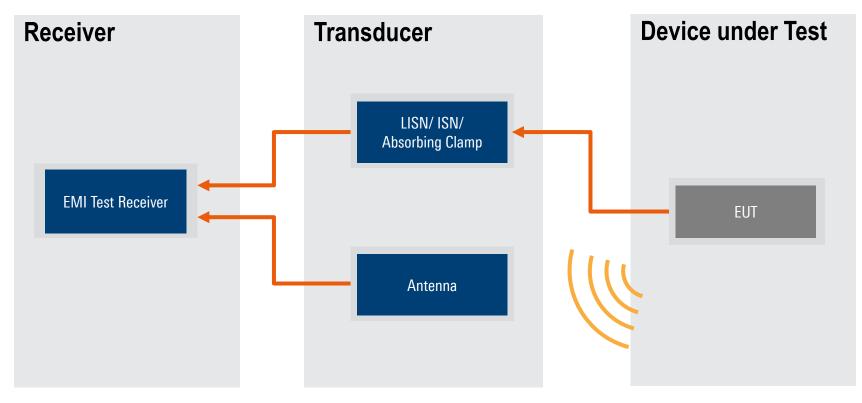

Standard	Description
EN50081-1	Generic emissions standard for residential, commercial and light industrial environments.
EN50081-2	Generic emissions standard for industrial environment
EN55022	Limits and methods of measurement of radio disturbance characteristics of information technology equipment
	(Also known as CISPR-22)
EN55011	Industrial, scientific and medical (ISM) radio frequency equipment - Radio disturbance characteristics - Limits and methods of measurement
	(Also known as CISPR-11)
EN55013	Limits and methods of measurement of radio disturbance characteristics of broadcast receivers and associated equipment
EN55014-1	Emission requirements for household appliances, electric tools and similar apparatus
EN55015	Limits and methods of measurement of radio disturbance characteristics of electrical lighting and similar equipment
EN61000-3-2	Limits for harmonic current emissions (equipment input current up to and including 16 A per phase)
EN61000-3-3	Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems

► EU Standard (Immunity)

Standard	Description
EN61000-4-2	Electrostatic Discharge
EN61000-4-3	Radiated Susceptibility Test
EN61000-4-4	Electrical Fast Transient/Burst Test
EN61000-4-5	Surge Test
EN61000-4-6	Conducted Immunity Test
EN61000-4-8	Power Frequency Magnetic Test
EN61000-4-11	Voltage Dips and Interruptions Test
EN61000-6-1	Immunity for residential, commercial and light-industrial environments
EN61000-6-2	Immunity for industrial environments
EN61547	Equipment for general lighting purposes — EMC immunity requirements
EN12016	Electromagnetic compatibility — Product family standard for lifts, escalators and passenger conveyors — Immunity

CISPR11 LIMITS

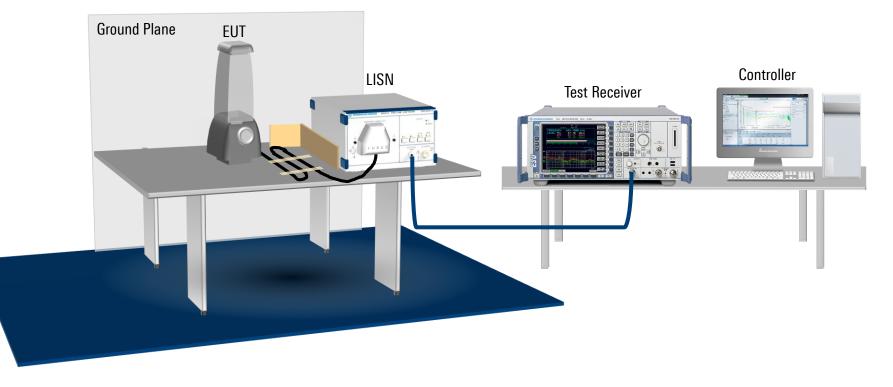
CISPR 11. Group 1 and Group 2. Class A and Class B. Conducted Emission Limits [Mains Ports]



EMI TESTS IN SUMMARY

	CISPR 11 ISM	CISPR 14 HOUSEHOLD EQUIPMENT	CISPR 15 LIGHTINGS	CISPR 32 MUTLIMEDIA EMC
CONDUCTED EMI (MAINS PORTS)	×	×	×	 Image: A second s
CONDUCTED EMI (TELECOM PORTS)				×
RADIATED EMI (MAGNETIC FIELD)	~	×	×	
RADIATED EMI (ELECTRIC FIELD)	~	×	~	×
POWER DISTURBANCE		×		

SETUP AND TOOLS FOR EMC MEASUREMENTS


SYSTEM CONFIGURATION

COMPLIANCE RADIATED EMISSION TEST

COMPLIANCE CONDUCTED EMISSION TEST

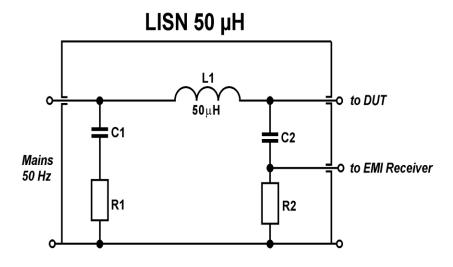
COMPLIANCE EMC TESTING: MEASURING EQUIPMENT TRANSDUCERS

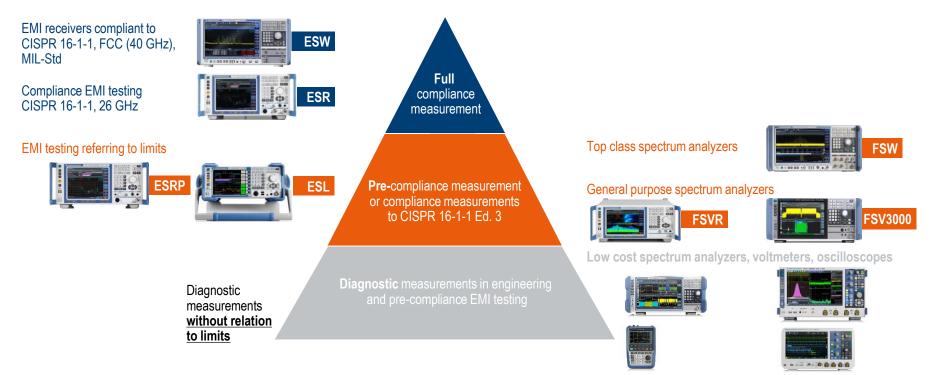
Antenna - electric radiated emission

ISN - Conducted voltage

Antenna – magnetic radiated emission

Current probe - conducted current

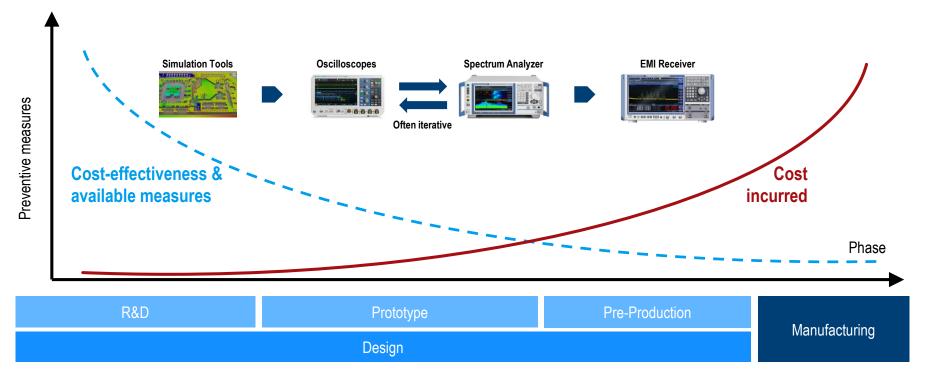

Artificial Network - Conducted voltage


Absorbing clamp – disturbance power

LINE AND IMPEDANCE STABILIZING NETWORK (LISN)

- ► Stable Line Impedance as a function of frequency on the power line
- Prevent External Noise (from the power line) Coupling in
- Provide an RF noise measurement port (50 ohm)
- Characteristics are defined in CISPR 16-1-2

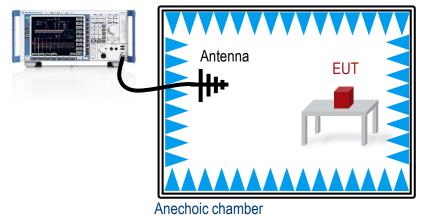
PERFORMANCE LEVELS OF INSTRUMENTATION SELECTING THE RIGHT TOOL


Scopes & Spectrum Analyzer

Receivers

COMPARISON BY FEATURES

Feature	EMI Receiver	Spectrum Analyzer	Oscilloscope
Auto-ranging		-	-
EMI detectors / bandwidths		(K54 Option)	-
Gapless recording	Very long	Long	-
Limit lines		(K54 Option)	Only masks / indicative
Dynamic / Sensitivity	Very high / Very good (With pre-selector)	High / Very Good	Medium / Good
Log-scale View		(K54 Option)	(some models)
Scan types	All (Sweep, step, time-domain, zero-span)	Some (Sweep, zero-span)	No scan (full bandwidth measurement)
Time/frequency correlation possible	(real-time option)	(real-time option, selected models)	
Typically available at	EMC test lab (in-house or external)	Pre-compliance test setup	R&D department


PREVENTION IS BETTER THAN CURE

Similar to medical check-up for preventive health care, we diagnose early on circuit to avoid future issues

EMC STANDARDS VS EMI MEASUREMENTS

Test Receivers

Typical EMC Measurement

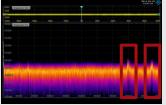
- ► Mostly far field in nature
- ► More accurate with less ambience noise
- More expensive to setup

EMI Measurement with Scope or Spectrum

- ► Near field measurements
- ► More noise and less accurate
- ► Cheap and flexible

GENERAL EMI DEBUGGING PROCEDURE ANALYSIS STEPS

A) Far-field measurement



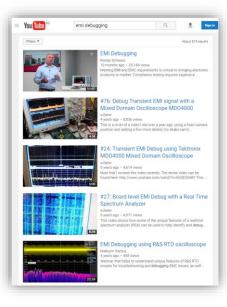
B) "Know your DUT": List of potential interferer sources

Source	Frequency
Clock frequency	e.g. 25 MHz + Multiples
Ethernet PHY	e.g. 125 MHz + Multiples
Voltage converter / power adapter	broadband

C) Reference measurement without DUT

D) Interferer current measurement to find out the coupling type

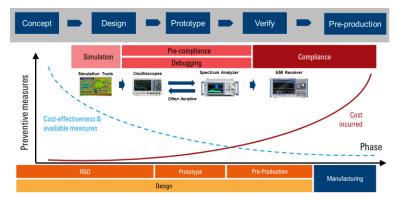
E) Nearfield probe to localize the interferer source

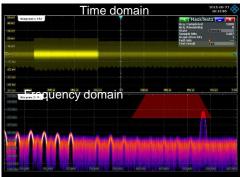

F) Analysis of counter-measures

DEBUGGING EMC PROBLEMS WITH OSCILLOSCOPES

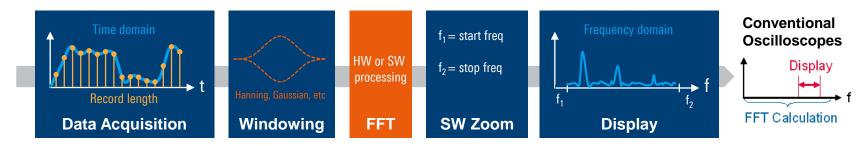
EMI DEBUGGING WITH SCOPE IS NOT NEW?!

DNAsia					
esign Centre 🔻	News Centre	Product Centre	Resource Centre	Webcasts	
EDN Asia >> Design	Centre >> Test & M	easurement >> Oscillo	scope for EMI debugging	? Really? (Part 1)	
est & Measurement				Share Print	
Oscilloscop	e for EMI de	bugging? R	eally? (Part 1)		
31 May 2013 Alvin	Ding, Markus Herdin				
Share this page with	your friends				
With the availability of	Tweet in s		+ Email powerful FFT analysis ar	Share Ind excellent noise	
performance, a new t	ool exists for debugg	ing EMI problems. Bas	ed on the results from co	impliance testing, the	
cause. Having acces	s to both time-domai	n and frequency-domai	nwanted emissions and i n, in the same instrument y available at the desk of	t, allows for faster	
it enables debugging	of EMI problems in I	R&D and allows tests b	efore going to the EMC la	ab thereby	
cionificantly increasin					
significantly increasin	g the likelihood of a	successful compliance	test.		
This is the first in a se	eries that discusses		highlights limitations of hi		
This is the first in a se oscilloscopes with po	eries that discusses werful FFT impleme	various use cases and ntations for EMI applica	highlights limitations of hi	gh-performance	
This is the first in a se oscilloscopes with po New digital oscillosco	eries that discusses werful FFT impleme pes, such as the Ro	various use cases and ntations for EMI applica hde & Schwarz RTO, v	highlights limitations of hi itions.	gh-performance se-case analysis,	

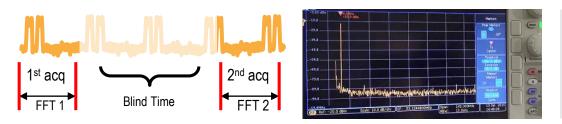



faster and more efficient.

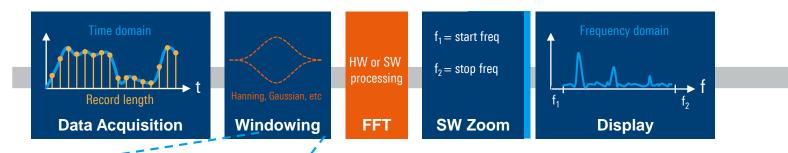
Better instruments progressively changes debug methodologies

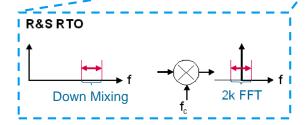

EMI DEBUGGING WITH OSCILLOSCOPES? YES, WE CAN! (AND ITS VERY HELPFUL)

- Available on every R&D engineers desk
- Oscilloscopes show both time and frequency domain
- Today's oscilloscopes provide excellent sensitivity and usability

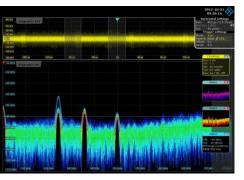


SPECTRUM MEASUREMENTS OSCILLOSCOPE USES FFT

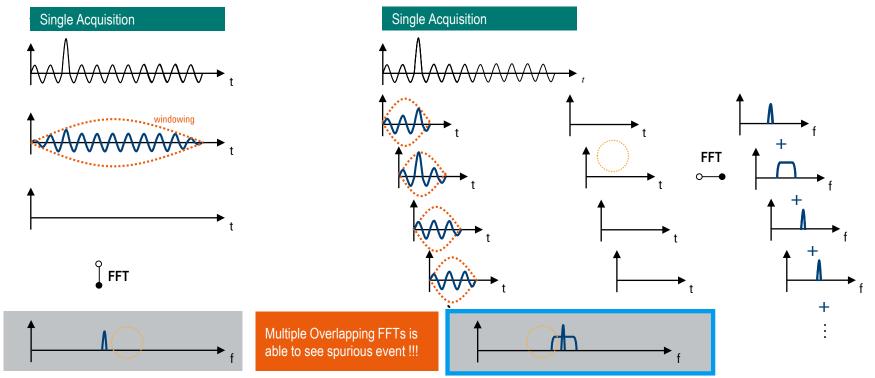

- Calculate FFT over entire acquisition
- ► Conventional Scope usually acquire one RL and reconstruct FFT then go on to acquire the next RL to compute the next FFT → Missing sporadic event

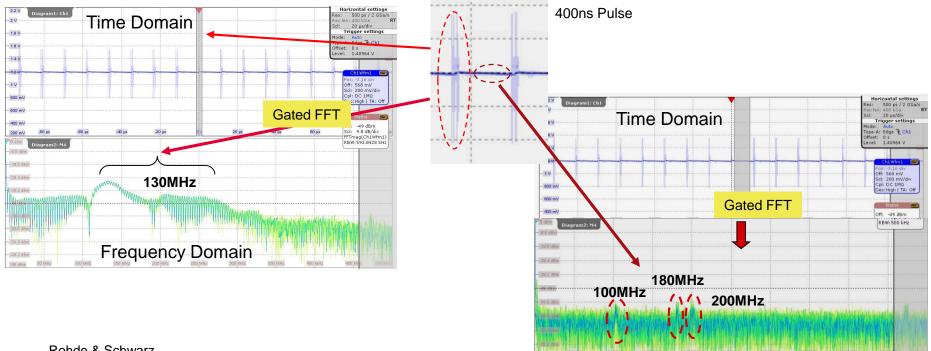


Disadvantages of conventional FFT :

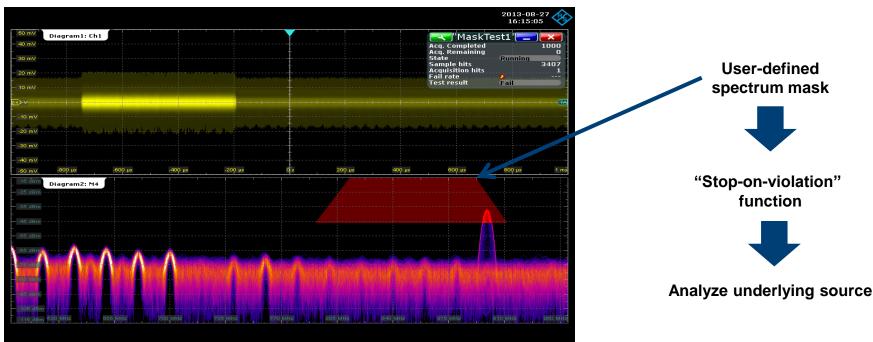

- Very slow speed / update rate
- Limited RBW due to insufficient RL
- Complex configuration (TD settings)

SPECTRUM MEASUREMENTS R&S MODERN OSCILLOSCOPE SPEEDING UP FFT

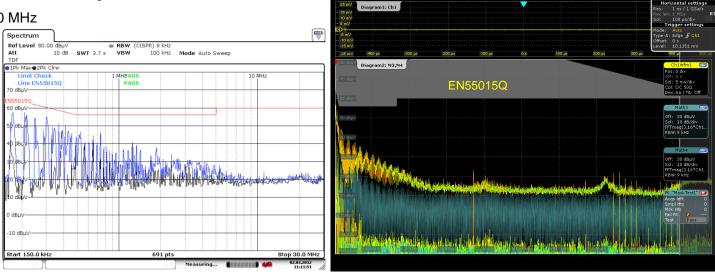

- ► Calculate only FFT over span of interest
- f_c = center frequency of FFT


Advantages of R&S approach:

- Higher speed / update rate
- Good RBW without magnification
- ► Flexible configuration
- Multiple overlapping FFT able to find spurious faults


MODERN SCOPE FFT CAPABILITIES USING OVERLAPPING FFTS

BASICS: SPECTRUM ANALYSIS ON LAB-CLASS OSCILLOSCOPES TIME-GATED FFT APPLICATION: SWITCHED MODE POWER **SUPPLIES**


BASICS: SPECTRUM ANALYSIS ON LAB-CLASS OSCILLOSCOPES SPECTRUM MASK FOR CAPTURING INTERMITTENT EMISSIONS

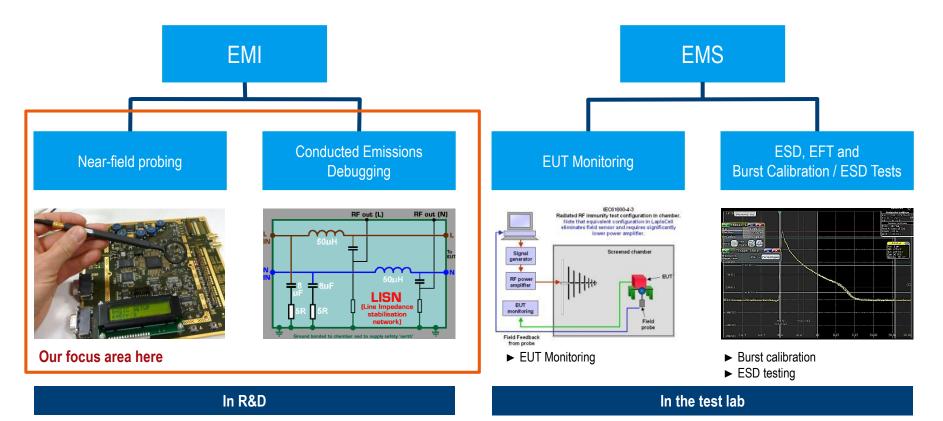
CREATE MASK TEMPLATE ON FFT TO SIMULATE LIMIT LINE

Pre-Compliance Analysis with Scope

- Conducted Emission using LISN
- 9 kHz 30 MHz

- Date: 2.MAR.2012 11:11:51
- FSV trace 1 = Max hold / Pos Peak
- FSV trace 2 = Clear Write / Auto Peak

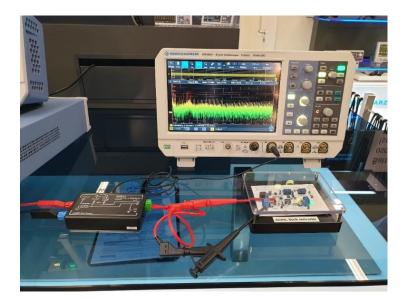
RTO FFT1 = Normal mode RTO FFT2 = Envelope mode 2012-03-02 11:11:40


MODERN SCOPE FFT CAPABILITIES CORRELATION OF TIME AND FREQUENCY INFORMATION

LAB VS MID-CLASS SCOPES FOR EMI DEBUGGING COMPARISON

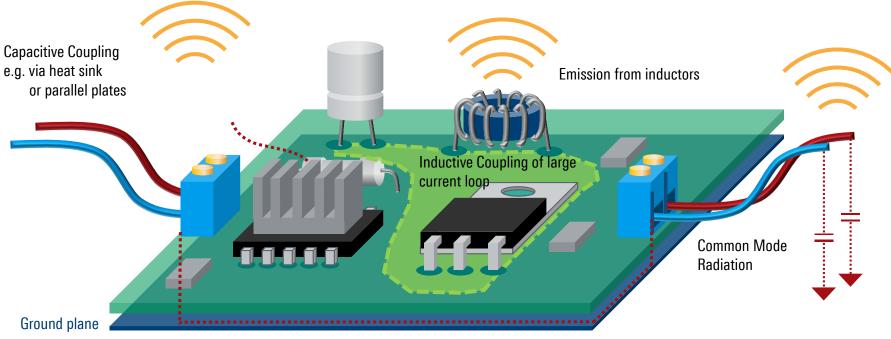
Feature	Lab-Class Oscilloscopes RTE1000, RTO2000	Mid-Class Oscilloscopes RTB2000, RTM3000, RTA4000
(Widely) independent choice of time scale and frequency settings	×	-
Overlap FFT functionality	×	-
Frequency masks	×	-
Time gated FFT	×	-
Log frequency scale	×	-
dBuV scale	×	✓
Direct frequency setting	×	✓
Time-frequency correlation	×	✓
Waterfall Diagram	×	\checkmark

EMC APPLICATION FIELDS OF OSCILLOSCOPES

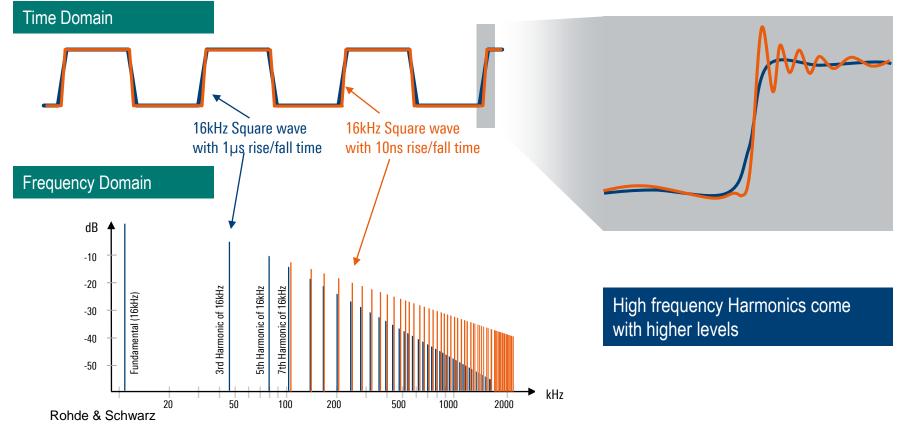


EMI DEBUGGING WITH OSCILLOSCOPES EXAMPLES

Radiated Emission Debugging after failed Pre-Compliance or Compliance

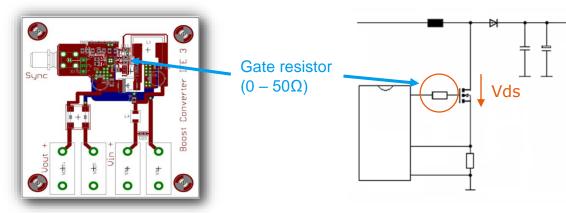


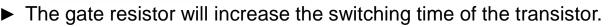
Conducted Emission Pre-test and debugging in the R&D lab


SWITCHED MODE POWER SUPPLIES AND EMC

ELECTRO-MAGNETIC EMISSION (EME) SOURCES

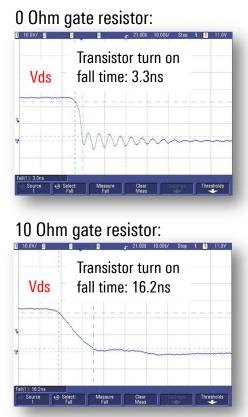
Large voltage drop when $GND \neq GND$


IMPACT OF FASTER SWITCHING AND STEEP EDGES ON EMI



EMI DEBUGGING CASE STUDIES

CASE STUDY OPTIMIZING WIDE BAND-GAP SWITCHING

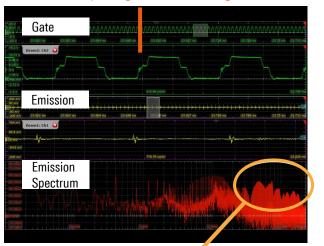

Change gate resistance to modify switching behavior

► This helps to reduce the high dV/dt and therefore the EME.

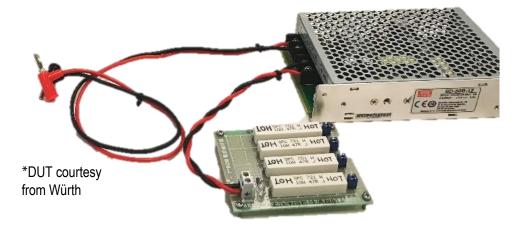
Increasing the gate resistor will also increase the switching losses!

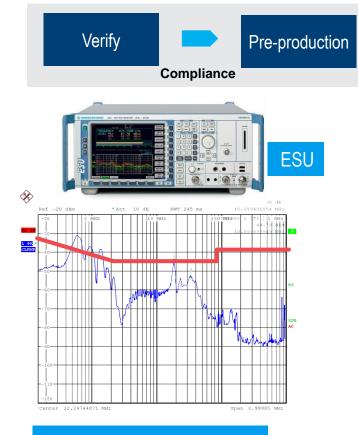
Rohde & Schwarz

CASE STUDY OPTIMIZING WIDE BAND-GAP SWITCHING



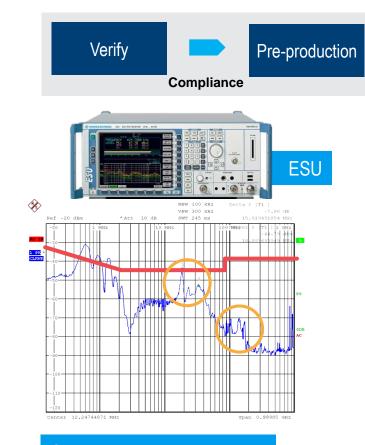
Fast gate driver signal




Shaped gate driver signal

Significantly reduced emissions


CASE STUDY: POWER SUPPLY DESIGN COMPLIANCE



Compliance

CASE STUDY: POWER SUPPLY DESIGN COMPLIANCE

Pre-compliance

Compliance

