車聯網時代汽車零部件EMC規範的新要求

RSTW AE Edmund Yen

ROHDE&SCHWARZ

Make ideas real

AGENDA

- ► Introduction
- Automotive EMC Testing
- ► Trends in Automotive EMC
- EMI Test Receiver ESx Product Feature and Function information
- R&S System Capability
- ► Conclusion

SAFE TO DRIVE IN THIS HOSTILE ENVIRONMENT?

THE NEED FOR AUTOMOTIVE EMC

TESTING IN AUTOMOTIVE EMC: ECE R10

	ECE-R10 EMC							
	EMI		EMS					
F	RF Power Frequency			RF				
Conducted	cted Radiated Harmonics/Flic ker		EFT, Surge	Conducted	Radiated			
CISPR 12 CISPR 25	CISPR 12 CISPR 25	IEC 61000-3-2 IEC 61000-3- 12/ IEC 61000-3-3 IEC 61000-3-11	ISO 7637-2 IEC 61000-4-4 IEC 61000-4-5	ISO 11451-4 ISO 11452-4	ISO 11451-2 ISO 11452-2 ISO 11452-3 ISO 11452-5			

Rohde & Schwarz 04/15/2021 車聯網時代汽車零部件EMC規範的新要求

5

STANDARD OVERVIEW: AUTOMOTIVE IN EMI STANDARD

Emission Standards

Limits and Methods of Measurement of radio disturbance characteristics for the protection of receivers used on board vehicles

Limits and methods of measurement for the protection of off-board receivers (Vehicles, boats and internal combustion engines)

STANDARD OVERVIEW: AUTOMOTIVE IN EMS STANDARD

BÈ

STANDARD OVERVIEW

8 Rohde & Schwarz 04/15/2021 車聯網時代汽車零部件EMC規範的新要求

CISPR 25 AUTOMOTIVE COMPONENT EMI

■ Limits and Methods of Measurement of radio disturbance characteristics for the protection of receivers used on board vehicles

CISPR 25: TEST SETUP & ENVIRONMENT

Example of Setup & Chamber:

Example: Setup & Environment:

CISPR 25: RADIATED TEST SETUP

CISPR 25: RADIATED TEST SETUP

7 Low relative permittivity support

ISO 11452-2: RADIATED IMMUNITY TEST SETUP

13 Rohde & Schwarz 04/15/2021 車聯網時代汽車零部件EMC規範的新要求

ISO 11452-4 CONDUCTED IMMUNITY TEST SETUP

ISO 11452: TEST METHODS

ISO 11452-2 ALSE Antennas Electric field strength

ISO 11452-3 TEM-Cell Electric field strength

ISO 11452-4 Injection probe Current injection

ISO 11452-8 Helmholtz coil Magnetic field strength

ISO 11452-5 Stripline Electric field strength

ISO 11452-9 Portable transmitter Radiated power

ISO 11452-7 Broadband Artificial Network Direct power injection

5

Magnetic field strength

ISO 11452: SUMMARY OF TESTS

Standard	Test	Transducer	Freq (Hz)	Level
ISO 11452-2	Radiated Immunity	Antenna / TLS	80M ~ 18G	100V/m
ISO 11452-4	Bulk current injection	Injection Probe & TWC	1M ~ 3000M	200mA / 33W
ISO 11452-3	Radiated immunity	TEM Cell	10k ~ 200M	200V/m
ISO 11452-5	Radiated immunity	Stripline	10k ~ 400M	200V/m
ISO 11452-8	Magnetic field immunity	Helmholtz coil / radiating loop	DC & 15 ~ 150k	Up 3000A/m
ISO 11452-9	Portable transmitter	Antenna	26M ~ 5.85G	0.5W ~ 16W
ISO 11452-10	Immunity in audio freq	Isolation transformer	15 ~ 250k	ЗV

16 Rohde & Schwarz 04/15/2021 車聯網時代汽車零部件EMC規範的新要求

- Developed by CISPR sub-committee D
 - 4th Edition was published on 27 October 2016 and Corrigendum COR1:2017
 - In Europe published on national level only, e.g. BS EN 55025:2017 (UK), DIN EN 55025:2018 (Germany)
 - EN 55025 is not listed in the Official Journal of the EU and has no legal status

Therefore, the car component manufacturer has to apply the specific company standards of the car manufacturer, which are usually based on CISPR 25 or EN 55025 respectively

What's New in Edition 4?

- The reference to CISPR 16-1-1 was updated to make FFT-based receivers like the R&S®ESW, R&S®ESR and R&S®ESU applicable for EMI compliance measurements
- I The appropriate average detector is the CISPR-AV detector with meter time constant, the alternative use of the pure linear AV detector was deleted
- I Frequency range was not extended, maximum = 2.5 GHz
- I Dielectric material is not used any more between cable harness and table in the component measurement setup for alternators and generators (Figure 8)

What's New in Edition 4? (continued)

- Apply correction factor for the AN, it is available from the manufacturer of the AN and can easily added as transducer factor in the receiver or system software
- A new informative Annex on chamber validation was added, it contains two alternative validation methods <u>("long wire"</u> and "reference site method")
- Disturbance measurements on the high voltage (HV) propulsion system of electric vehicles
 - I Disturbance voltage and current, voltage measurement requires specific 5 μ H//50 Ω HV-AN, i.e. in shielded box, adaption for shielded cables and additional resistor for discharging to <50 V within 60 s
 - RE for components, ALSE method (150 kHz to 2500 MHz)
 - Coupling between HV and LV system by direct S-parameter measurements (decoupling factor) or based on existing CISPR 25 test set-up (voltage, current and electric field)

What's New in Edition 4? (continued)

- Using the minimum dwell time as defined in Table 2 with a measuring receiver can result in enormous measurement result errors
- In a worst case the receiver will not capture the disturbance signal at all if the dwell time is shorter than the pulse repetition interval of the disturbance signal
- Not suitable for measuring intermittent narrowband signals with CISPR-AV detector! Should be at least:
 - I 160 ms in AM Band (<30 MHz)
 - I 100 ms in Bands >30 MHz

Service / Frequency range		Peak detection			Quasi-peak detection			Average detection		
MHz		Step size	Dwell time	BW at -6 dB	Step size	Dwell time	BW at -6 dB	Step size	Dwell time	
0,15 - 30	9 kHz	5 kHz	50 ms	9 kHz	5 kHz	1 s	9 kHz	5 kHz	50 ms	
76 - 108										
30 to 1 000										
41 - 88	120 kHz	50 kHz	5 ms	120 kHz	50 kHz	1 s	120 kHz	50 kHz	5 ms	
174 – 230										
470 - 890										
171 - 245										
470 - 770	120 kHz	50 kHz	5 ms	Does not apply	Does not apply	Does not apply	120 kHz	50 kHz	5 ms	
1 000 - 2 500	120 kHz	50 kHz	5 ms	Does not apply	Does not apply	Does not apply	120 kHz	50 kHz	5 ms	
1 567 – 1 583	Does not apply	Does not apply	Does not apply	Does not apply	Does not apply	Does not apply	9 kHz	5 kHz	5 ms	
	Juency range Hz 0,15 - 30 76 - 108 30 to 1 000 41 - 88 174 - 230 470 - 890 171 - 245 470 - 770 1 000 - 2 500 1 567 - 1 583	Juency range Pea Hz BW at -6 dB 0,15 - 30 9 kHz 76 - 108 120 kHz 30 to 1 000 120 kHz 41 - 88 120 kHz 174 - 230 470 - 890 171 - 245 120 kHz 470 - 770 120 kHz 1 000 - 2 500 120 kHz 1 567 - 1 583 Does not apply	BW at -6 dB Step size 0,15 - 30 9 kHz 5 kHz 76 - 108 9 kHz 5 kHz 30 to 1 000 120 kHz 50 kHz 41 - 88 120 kHz 50 kHz 174 - 230 120 kHz 50 kHz 470 - 890 120 kHz 50 kHz 171 - 245 120 kHz 50 kHz 1 000 - 2 500 120 kHz 50 kHz 1 567 - 1 583 Does not apply Does not apply	Juency range Hz Peak detection Hz BW at -6 dB 9 kHz Step size Dwell time 0,15 - 30 9 kHz 5 kHz 50 ms 76 - 108 120 kHz 5 kHz 50 ms 30 to 1 000 120 kHz 50 kHz 5 ms 41 - 88 120 kHz 50 kHz 5 ms 174 - 230 470 - 890 50 kHz 5 ms 470 - 770 120 kHz 50 kHz 5 ms 1 000 - 2 500 120 kHz 50 kHz 5 ms 1 567 - 1 583 Does not apply Does not apply Does not apply	Juency range Hz Peak detection Quas Hz BW at -6 dB Step size Dwell time BW at -6 dB 0,15 - 30 9 kHz 5 kHz 50 ms 9 kHz 76 - 108 9 kHz 5 kHz 50 ms 9 kHz 30 to 1 000 120 kHz 50 kHz 5 ms 120 kHz 41 - 88 120 kHz 50 kHz 5 ms 120 kHz 470 - 890 120 kHz 50 kHz 5 ms Does not apply 470 - 770 120 kHz 50 kHz 5 ms Does not apply 1 000 - 2 500 120 kHz 50 kHz 5 ms Does not apply 1 567 - 1 583 Does not apply Does not apply Does not apply Does not apply	Juency range Hz Peak detection Quasi-peak detection Hz BW at -6 dB Step size Dwell time BW at -6 dB Step size 0,15 - 30 9 kHz 5 kHz 50 ms 9 kHz 5 kHz 76 - 108 9 kHz 5 kHz 50 ms 9 kHz 5 kHz 30 to 1 000 120 kHz 50 kHz 5 ms 120 kHz 50 kHz 41 - 88 120 kHz 50 kHz 5 ms 120 kHz 50 kHz 470 - 890 120 kHz 50 kHz 5 ms Does not apply Does not apply 470 - 770 120 kHz 50 kHz 5 ms Does not apply Does not apply 1 000 - 2 500 120 kHz 50 kHz 5 ms Does not apply Does not apply 1 567 - 1 583 Does not apply Does not apply Does not apply Does not apply Does not apply	Juency range Hz Peak detection Quasi-peak detection Hz BW at -6 dB size Step size Dwell time BW at -6 dB size Step size Dwell time 0,15 - 30 9 kHz 5 kHz 50 ms 9 kHz 5 kHz 1 s 76 - 108 9 kHz 5 kHz 50 ms 9 kHz 5 kHz 1 s 30 to 1 000 41 - 88 174 - 230 470 - 890 120 kHz 50 kHz 5 ms 120 kHz 50 kHz 1 s 470 - 700 120 kHz 50 kHz 5 ms Does not apply Does not apply	Juency range Hz Peak detection Quasi-peak detection Aver Hz BW at -6 dB Step size Dwell time BW at -6 dB Step size Dwell time BW at -6 dB BW size BW time BW at -6 dB BW at -6 dB BW at -6 dB BW size Dwell time BW at -6 dB BW at -6 dB BW size Dwell time BW at -6 dB BW size BW time BW at -6 dB BW size BW at -6 dB BW at -6 dB BW size BW at -6 dB BW at -6 dB BW size S BW size S the S th	Juency range Hz Peak detection Quasi-peak detection Average detection Hz BW at -6 dB Step size Dwell time BW at -6 dB Step size Dwell time BW at -6 dB Step size Dwell time BW at -6 dB Step size 0,15 - 30 9 kHz 5 kHz 50 ms 9 kHz 5 kHz 1 s 9 kHz 5 kHz 76 - 108	

Table 2 – Scanning receiver parameters

- Wrong measurement time can result in enormous errors!
 - Pulse modulated carrier with 12 ms pulse period, Time Domain Scan shows closed trace with 12 ms measurement time
 - Gaps in TD Scan trace with 10 ms
 measurement time
 - Even when 10 ms yields a closed trace in Stepped Scan, zooming in reveals gaps in the trace
 - I Important Measurement time ≥ signal period!

- What's Coming in Edition 5?
 - Maximum frequency will be extended beyond 2500 MHz for both component (ALSE method) and vehicle (voltage at internal antenna) testing, this will add new frequency bands up to 6 GHz:
 - 4G: 2496 to 2690 MHz, 3300 to 3800 MHz and 5150 to 5925 MHz
 - WiFi: 5150 to 5350 MHz and 5470 to 5725 MHz
 - C2X (Car-to-X Communication): 5850 to 5925 MHz
 - Adds new GNSS band: BDS (BeiDou System)
 - Revision of measurement methods in charging mode of electric and hybrid vehicles based on charging mode concept in IEC 61851-1 (Mode 1 to 4)
 - New Annexes will be added on the consideration of measurement instrumentation uncertainty (MIU), also uncertainty budget is given (sample calculation)

> 23 Rohde & Schwarz 04/15/2021 車聯網時代汽車零部件EMC規範的新要求

NEW INTEREST TOPICS WITHIN ISO AUTOMOTIVE WORKING GROUP

ADAS	C2X	EMC & ISO 26262	Automotive EMC Environment	Vehicle EMS	Virtual Testing
Human machine interface to provide assistance in driving	Communication from vehicle-to- everything	ISO 26262 addresses functional safety requirements for electrical & electronic systems	Specific conditions required for automotive EMC testing	Alternative vehicular test methods, e.g. Intentional EMI, Magnetic Field & Reverberating Chamber	Virtual testing for safety analysis
To study the ADAS functionality during immunity	To study C2X functionality during EMC testing	To study the functionality tests under EMC testing environments	To consider requirements specifically for testing in automotive EMC	Consideration of newer EMC test methods.	To consider future virtual testing for safety assessment

RISING UP TO THE CHALLENGE

27 Rohde & Schwarz 04/15/2021 車聯網時代汽車零部件EMC規範的新要求

► EME Effects test is putting the DUT/SUT under the sum of

- **EMC** tests which directly tests for safety and reliability of electrical & electronic devices;
- **Radio coexistence** which evaluates performance and functionality in the presence of known radio and wireless communication signals;

- Scenarios that introduce diverse operational environments; in order to know the Worst-case Effects and evaluate the Safety Integrity of the DUT/SUT by advance analysis methods

29 Rohde & Schwarz 04/15/2021 車聯網時代汽車零部件EMC規範的新要求

FIXED MODULATION FOR CONVENTIONAL EMS

CONVENTIONAL EMS SIGNAL VS EME SIGNAL

CONVENTIONAL EMS SIGNAL VS EME SIGNAL

32 Rohde & Schwarz 04/15/2021 車聯網時代汽車零部件EMC規範的新要求

EMC STANDARDS

RELEVANT TEST STANDARD DOCUMENTS

EME SIGNAL COLLECTION AND RECORDING ON ROAD

EME SIGNAL COLLECTION AND RECORDING ON ROAD

TESTING EME IN CHAMBER

EMULATE COMPLEX EME SIGNALS

Enable the Road Electromagnetic Environment Testing

- Radio coexistence which evaluates performance and functionality in the presence of known radio and wireless communication signals;

Scenarios that introduce diverse operational environments

EMULATE COMPLEX EME SIGNALS

Enable the Military Electromagnetic Environment Testing

BRING REAL-WORLD EME TO LAB

EME FEATURE

Recommended Specification

FREQUENCY AND BANDWIDTH Carrier Frequency < 6 Ghz

Baseband BW 160Mhz ARB BW 160 Mhz

Analysis BW 160Mhz

FIDELITY & FIELDSTRENGTH Subjected to recording and system calibration Max-Pk field-strength may limited existing EMC system

AMPLIFIER SPECIFICATION

Subjected to waveform characteristics and field strength levelling method

VALIDATION

TA-EME are designed according to CSAE recommended method and requirements

EME MONITORING SYSTEM

EUT Monitoring Concept

TAS-EME SOFTWARE FEATURES

VISIT EME SOLUTION

Collaborating and sharing ideas

Electromagnetic Environment (EME) Software Solution Application Note App Notes

Products:

- RAS#SMEV100A
- RASHOR
- RASIFSV
- R8S®EMC32

There is a need in the market to introduce an ease of use method to record, playback and manage large amounts of recorded waveform file. With the rise in automotive industry, it i to replicate interference observed in the environment.

This application note describe and depicts the functionalities for EME software solution ar plations, which have to be done to support the EME test method

BUILT FOR THE FUTURE TESTING

(EME) Test System

has been in use since April 2012.

12

Public

and 11 Members

August 2019

R&S Asia Deliver World's First Electromagnetic Environment

R&S engineers have successfully completed the installation, commissioning and

System for electric vehicles at the China Automotive Technology and Research

Center (CATARC) at Tianin (southeast of Beijing) in China. Established in 1985, CATARC is the Leading Chinese research center for national

automotive standards. An R&S EMC test installation using the 10 meter chamber

For electric vehicles, CATARC are developing an Electric Vehicle Test (EV-TEST) evaluation and point system. The latest version of the EV-TEST requirements

includes conventional EMS test according to GB34660, plus the new EME

requirements; in total 5% under the EV-TEST points system.

staff training for the world's first complex Electromagnetic Environment (EME) Test

More .

Test & Measurement News

Company restricted

+ Invite

Articles

What is EV Test? What is EME Test?

Electric Vehicle Test & Assessment (EV-TEST) is a Chinese initiativo, promoted by CATARC. The idea of EV-TEST is to establish an independent, impartial, and high-standard test and assessment system for electric vehicle performance from the consumer point of view. The Introduction to the EV-TEST Management Rules, written by CATARC. explains that the current domestic and imational standards for electric vehicles omit important performance criteria, so that a comprehensive test and assessment system requires adds new additional test methods. In the established Chinese EMC standard for road vehicles, GB 34660, new requirements for the Electromagneti Environment (EME) are also included. Together, EMC and EME contribute to the safety requirements and 5% of the treal EV-TEST assessment

CATARC first approached RS-Aria with a request to update the existing EMC test system to include the EME requirements, in 2018. The new requirements include simulating a complex electromagnetic environment featuring broadcast transmission signals, low frequency signals below 30 MHz, and frequencies from 30 MHz - 1 GHz including walkie-talkie transmissions, plus GSM, LTE, and WiFi

signals. To meet these new requirements IOR, SMW, FSW, FSV, TS-EMF, and EME software developed by RS-Asia, all needed to be integrated into the existing installation. At the same time, AdVISE, the automatic visual inspection software to detect and record faults in the vehicle's electronic and electrical system when subjected to high field strength interference was also added to the system.

- 4 Categories
- Automotive
- Medical \geq
- Military
- Wireless >

ENE test is specified in the

Rohde & Schwarz 04/15/2021 車聯網時代汽車零部件EMC規範的新要求

R&S®ESW EMI TEST RECEIVER

Highlights

- Sensitivity: Built-in preamplifier, optional LNA and notch filters
- Speed: Unique time-domain scan with parallel CISPR detectors
- Usability: Big high resolution touch screen
- MultiView: All needed measurements in one display

High-end compliance receiver based on proven FSW platform

- 1 Hz to 8 / 26.5 / 44 GHz
- ► All relevant standards from commercial to military
- Best HF performance receiver and spectrum analyzer in one device

R&S®ESW HF PERFORMANCE

- ► High dynamic range and sensitivity
 - 1 dB compression point: +15 dBm (< 3 GHz, Presel., Preamp and LNA off)
 - Third-order intercept point (TOI): > 20 dBm (< 1 GHz, Presel., Preamp and LNA off)
 - Displayed average noise level (DANL): < -149 dBm

(Between 1 MHz and 1 GHz, Presel., Preamp and LNA off)

- Very low spurious responses: < -110 dBm (1 MHz - 8.9 GHz)
- Preselection and notch filters
 - 2.4 2.5 GHz and 5.725 5.875 GHz for ISM band suppression

Configurable input signal path of ESW

R&S®ESW MEASUREMENTS BEYOND 44 GHZ

- Automotive radar testing
 - e.g. 77 GHz
- A&D applications analyzing interferer
 - 110 GHz or higher

ESW-B21 EMI Test Receiver ESW26/44 FS-Zxx

- ► FCC compliance test
 - Measurement up to 5th order harmonics
 - Up to 200 GHz for carrier frequency above 30 GHz
- R&S ESW-B21 & FS-Zxx harmonic mixers extend the frequency coverage of the ESW26 / 44 up to 500 GHz.

R&S®ESW CUSTOMIZABLE MULTI-VIEW

R&S®ESW INTUITIVE GRAPHICAL USER INTERFACE

Test Automation Overview Block Diagram

1. Scan table

- Customizable frequency ranges
- Measurement time
- Resolution Bandwidths (RBW)

2. Peak Search

- Record to Peak List
- Choose Limit Line according to standard

3. Final Measurement

- Interactive Mode
- 4. Final Results
 - Report generation

Overview	Scan Table	Peak Search	Traces / Final Mea	Peak List	Final Result	LISN Settings	
I.L	X .		t.t.t		=		
Sca			Peak Search		Final Meas.		
				+			
						Final Results	
			PE	IK LIST		Thial Results	
Scan Confi	9						
	Scan Type 📒	TDomain	Stepped (Fixed Frequen	ev)		
TDS O	ptimization 🧲	Fast	Automatic	Dynamic			
Scan	Daramatar	Scon Tab		urrent		can Count	
		Jun 100		arrent			

R&S®ESW TIME DOMAIN SCAN FOR MIL-STD & COMMERCIAL

- Rohde & Schwarz was the lead manufacturer in the Tri Services Working Group on the integration of Time Domain Scan within MIL-STD-461G
- Conducted band (150 kHz 30 MHz) fits in one FFT analysis BW
- Perform QP & CISPR Avg in real-time on the conducted band

FFT is faster by numbers of magnitude than the classic scan

R&S®ESW MEASUREMENT SPEED

Time domain scan with 3 optimization modes

- Automatic

full compliant to CISPR 16-1-1

- Fast

Compliant to CISPR 16-1-1 for pulses with a repetition frequency \geq 10 Hz

– Dynamic

Enhanced dynamic in CISPR band D for applications with requirements beyond CISPR 16-1-1

es			R&S ESW			
		Measurement times	Automatic TDS (full compliant)	Fast TDS		
		150 kHz – 30 MHz 9 kHz, QP + CAV, 1 s	2 s	2 s		
		150 kHz – 30 MHz 9 kHz, Peak, 100 ms	110 ms	110 ms		
		30 MHz – 1000 MHz 120 kHz, Peak, 10 ms	380 ms	380 ms		
CISPR 25 Automotive		30 MHz – 1000 MHz 9 kHz, QP + CAV, 1 s	64 s 🍣	% 40 s		
		30 MHz – 1000 MHz 120 kHz, QP + CAV, 1 s	50 s	% 40 s		
ISPR 11 owave oven		1 GHz – 6 GHz 1 MHz, Peak + CAV, 100 ms	216 s - 57	% 111 s		
		1 GHz – 18 GHz 1 MHz, Peak, 10 ms	8 s	8 s		
FCC		1 GHz – 26.5 GHz 1 MHz, Peak + AV, 10 ms	13 s	13 s		
MIL		1 GHz – 40 GHz 1 MHz, Peak, 10 ms	21 s	21 s		

Αι

CIS Microw

FFT-BASED RECEIVER FOR EMI COMPLIANCE MEAS. TIME DOMAIN SCAN VS STEP SCAN TIME:

Frequency range	Weighting detector; measurement time; IF bandwidth; step width for stepped scan (SS) and Time Domain Scan (TD)	FFT-based measuring instrument		
		Stepped Scan	Time-domain Scan	
CISPR Band B 150 kHz to 30 MHz	Pk; 100 ms; 9 kHz; SS: 4 kHz, TD: 2.25 kHz	12.35 mins	0.11 s	
CISPR Band B 150 kHz to 30 MHz	QP + CAV, 1 s, 9 kHz SS: 4 kHz, TD: 2.25 kHz	approx. 3.8 h	2 s	
CISPR Bands C/D 30 to 1000 MHz	Pk, 10 ms, 120 kHz SS: 40 kHz, TD: 30 kHz	4.15 mins	0.62 s	
CISPR Bands C/D 30 to 1000 MHz	Pk, 10 ms, 9 kHz SS: 4 kHz, TD: 2.25 kHz	approx. 1 h	0.84 s	
CISPR Bands C/D 30 to 1000 MHz	QP, 1 s, 120 kHz SS: 40 kHz, TD: 30 kHz	approx. 10 h	80 s	
CISPR Bands C/D 30 to 1000 MHz	QP + CAV, 1 s, 9 kHz SS: 4 kHz, TD: 2.25 kHz	approx. 100 h	67 s	

REAL-TIME SPECTRUM

Data acquisition and processing in parallel with 80 MHz bandwidth

REAL-TIME SPECTRUM

- Detect complex signals at first
- Persistence mode
 - Shows probability of amplitude appearence with colors. Signals with different behavior in time become visible even if hidden behind broadband interferers

Spectrum mode

 Displays behavior of traces in time for easy identification of drifting or pulsed signals

RS SOLUTION_TAS-EME SYSTEM

Thanks for your attention