車用雷達測試面面觀

Arsene Chen 陳震華 Application Engineering Manager

ROHDE&SCHWARZ

Make ideas real

ADAS TECHNOLOGY AND TEST CHALLENGES

COMPANY RESTRICTED

R. 11. 1.50

R&S Solutions for Automotive Radar LEVELS OF DRIVING AUTOMATION (SAE J3016[™])

AUTONOMOUS DRIVING REQUIRES TECHNOLOGY INNOVATION IN MANY AREAS

- Sensor performance and robustness
 - Radar has potential for reaching Lidar like resolution
 - Lidar not yet meeting cost/performance sweet spot
- ► V2X deployment and infrastructure required
- Road testing needs to be replaced to large extend by improved
 Virtual Integration/Validation and Vehicle-in-the-Loop approaches
- Standardization required for mastering system complexity

AUTOMOTIVE RADAR FREQUENCY MAP 76-81 GHZ GLOBALLY AVAILABLE

R&S Solutions for Automotive Radar FMCW RADAR – RANGE MEASUREMENT

7 Rohde & Schwarz 2023/4/13 Test and Measurement Solutions for Automotive Radar

COMPANY RESTRICTED

R&S	Solutions	for Automotive Radar	

FMCW RADAR – RANGE RESOLUTION

f(t).	 Transmit Signal τ ■ Receive Signal
BW	fp
	1D
f	T _{CPI} t

	△Range	△Range
BW (Mhz)	(m)	(cm)
150	1.00	99.93
250	0.60	59.96
400	0.37	37.47
500	0.30	29.98
750	0.20	19.99
1000	0.15	14.99
2000	0.07	7.49
4000	0.04	3.75
5000	0.03	3.00

The chirp bandwidth determines the range resolution. It is the FMCW equivalent to pulse width in pulsed radar.

R&S Solutions for Automotive Radar FMCW RADAR – ANGULAR MEASUREMENT

- *d* Physical distance between antennas
- $\Delta \varphi$ Phase difference
- α Angle of arrival
- λ wavelength

$$\alpha = \sin^{-1}\left(\frac{\lambda \cdot \Delta \varphi}{2\pi d}\right)$$

Estimate azimuth / elevation angles from phase differences / amplitudes at the receive antennas of the phased array

R&S Solutions for Automotive Radar FMCW RADAR – MIMO FOR ANGULAR RESOLUTION

- Requirement: Angular resolution
 Phase difference φ from antenna to antenna (Object is far away – plane wave approach)
- Angular resolution with 8 Rx antennas
- MIMO approach with 4 Rx and 2 Tx Tx1 is seperated by 4d from Tx2 Wave emanating from Tx2 traverses an additional path of length 4dsin(θ) compared to Tx1
 → 6 antennas vs. 9

1) http://www.ti.com/lit/an/swra554a/swra554a.pdf

RADAR TECHNOLOGY TRENDS CAR CONFIGURATIONS 2022

RADAR TECHNOLOGY TRENDS TYPICAL SENSOR PARAMETERS

Radar Module Parameters	Short-Range Radar	Standard Mid- Range Radar	Premium Mid- Range Radar	Standard Long- Range Radar	Premium Long- Range Radar
Frequency Range [GHz]	24,76-77,77-81	76-77	77-81	76-77	76-77
Typical Bandwidth [MHz]	200, 1000, 4000	1000	2000	500	1000
Range [m]	80	150	150	250	300
Range Resolution [cm]	300, 30, 3.5	30	7.5	75	30
FOV Azimuth / Elevation [°]	±60 / ±0	±30 / ±0	±50 / ±15	±15 / ±5	±15 / ±10
Typical Channel Number [Transmit / Receive]	3 TX / 4 RX	4 TX / 8 RX	8 TX / 12 RX	4 TX / 8 RX	12 TX / 16 RX

RADAR TECHNOLOGY TRENDS NEW MODULATION SCHEMES FOR BETTER INTERFERER ROBUSTNESS

Modulation Technique	Today: FMCW	Near Future: PMCW	Long term: OFDM
Waveform	f f f f f f f f f f f f f f f f f f f	θ t ~0.5 ns	
Waveform Duration	~10 µs	~1 µs	~1 µs
ADC Sample Rate	~50 MSample/s IQ	>1 GSample/s IQ	>1 GSample/s IQ
Interferer Robustness	Good	High	High
Massive MIMO	Multi-Phase, Chirp Coded	Phase Coded	Orthogonal Sub-Carrier

MARKET TRENDS AND TEST CHALLENGES

- New legislations and OEMs require improved module quality assurance
 - RF compliance testing up to 231 GHz (e.g. ETSI, FCC)
 - Virtual integration and Hardware-in-the-Loop testing for type approval
- ► 134 GHz to 141 GHz regulation in early stage (2026 earliest)
- 60 GHz in-cabin radar for rear seat passenger monitoring
- High penetration requires cost reduction of car production and maintenance:
 Yield improvement by active calibration and lower mounting tolerances
- High performance radars continue to push the limits:
 E.g. bandwidth up to 5 GHz, MIMO, more channels, new modulation schemes
- L3 and beyond systems requires Virtual Integration and Vehicle-in-the-Loop validation

TEST AND MEASUREMENT SOLUTIONS

COMPANY RESTRICTED

R. 19. 19

RADAR MARKET TEST REQUIREMENT OVERVIEW

RADAR SIGNAL AND MATERIAL ANALYSIS VECTOR NETWORK ANALYZER

- Vector Network Analyzer for precision measurements
 - Antenna matching (S11)
 - Conversion loss from 77GHz input to IF output (R&D)
 - Power level test (saturation, compression) by power sweeps
 - RF component test like mixers, filters, power amplifiers or LNAs
 - On-wafer test of MMIC
 - Free-space material characterization

► ZNA67EXT

- Single Sweep solution for **10 MHz to 110 GHz** Meas.
- Two port and Four port systems

RADAR SIGNAL ANALYSIS SPECTRUM ANALYZERS AND OSCILLOSCOPES

- Spectrum Analyzers for high sensitivity measurements
 - Signal analysis for up to 90 GHz frequency and 8.3 GHz bandwidth
 - Measuring chirp frequency linearity, length, long-term stability and power in order to improve accuracy and fulfill regulatory requirements
 - Measuring chirp phase noise to increase sensitivity

Oscilloscopes for low latency & phase-coherent multi-channel measurements

- Up to 16 GHz bandwidth @ 40 GSample/s and 2 GSample storage
- Triggering on complex radar signals after real-time de-embedding
- Comprehensive signal analysis with VSE software

> 17 Rohde & Schwarz 2023/4/13 Test and Measurement Solutions for Automotive Radar

FSW85 Spectrum Analyzer

COMPANY RESTRICTED

RTP0x4 Oscilloscope

18

RADAR SIGNAL ANALYSIS CHIRP SIGNAL ANALYSIS WITH R&S SOFTWARE

Analyze the Full spectrogram of the signal in waterfall view.

Analyze the chirp in an intuitive time-frequency plot.

Check the frequency deviation of the chirp at each time instant.

A table summarizing all important chirp specifications.

COMPANY RESTRICTED

Rohde & Schwarz 2023/4/13 Test and Measurement Solutions for Automotive Radar

RADAR SIGNAL ANALYSIS D-BAND CONVERTORS FOR RADAR/B5G RESEARCHES

- FE170ST and FE170SR frontends extend the supported frequency range of SMW200A, FSW and RTP to 110-170 GHz
- Integrated to UI of base units
- Calibrated solution as correction data of IF cables and frontend is considered by base units
- Smart accessories (Bandpass filter and Tx PA)
- Excellent signal performance

RADAR TARGET SIMULATION MOST SCALABLE AND VERSATILE SOLUTION IN THE MARKET

Rohde & Schwarz 2023/4/13 Test and Measurement Solutions for Automotive Radar

RADAR TARGET SIMULATION ANGULAR RESOLUTION & FIELD-OF-VIEW WITH QAT100

The field-of-view (FOV) and angular resolution achievable with the R&S®QAT100 are dependent on the setup but can be calculated as follows:

Field-of-view:

$$\alpha = 2 \cdot \tan^{-1} \left(\frac{351mm}{d} \right)$$

Angular resolution:

$$\Delta \alpha = \tan^{-1} \left(\frac{3,7mm}{d} \right)$$

Rohde & Schwarz 2023/4/13 Test and Measurement Solutions for Automotive Radar

RADAR TARGET SIMULATION MOST SCALABLE AND VERSATILE SOLUTION IN THE MARKET

EOL Production Test Research and Development R&S®AREG100A or R&S®AREG800A **R&S®AREG800A** with various frontends Hardware-in-the-Loop Vehicle-in-the-Loop (together with AVL) R&S®AREG800A and R&S®QAT100 R&S®AREG800A and R&S®QAT100

HARDWARE-IN-THE-LOOP VALIDATION COLLABORATION WITH VECTOR

Closed-loop radar module validation using realistic road scenarios or artificial test cases

Open Simulation Interface (OSI) ensures future-proof and smooth software integration

Vector CANoe for rest-bus simulation via CAN or Ethernet connectivity in real-time

CAN signals from restbus simulation

FUTURE-PROOF REFERENCE SOLUTION FOR RESEARCH, DEVELOPMENT & COMPLIANCE TESTING

Future-proof CATR reflector technology for growing antenna apertures

Unique turn-key solution based on best-in-class components

Performance confirmed by customers working on leading edge radar

ATS1500C

PRE-PRODUCTION CALIBRATION BENCHMARK COLLABORATION WITH UHNDER

- Calibration of PMWC radar with large number of antennas is demanding
- R&S and Uhnder started collaboration mid of 2019

COMPANY RESTRICTED

UHNDER

PRE-PRODUCTION CALIBRATION BENCHMARK COLLABORATION WITH UHNDER

 Successful calibration with ATS1500C and AREG100A demonstrated at CES 2020

COMPANY RESTRICTED

UHNDER

RADAR MODULE PRODUCTION TESTER PARTNERSHIP WITH NOFFZ TECHNOLOGIES

Future-proof CATR reflector technology for growing antenna apertures

Seamless CATR production tester solution for customers developing radar in ATS1500C

Bundle CATR and AREG ensures best quiet zone

Joined Go-to-Market

RADAR ANGULAR MEASUREMENT TECHNOLOGY

- *d* Physical distance between antennas
- $\Delta \varphi$ Phase difference
- α Angle of arrival
- λ wavelength

$$\alpha = \sin^{-1}\left(\frac{\lambda \cdot \Delta \varphi}{2\pi d}\right)$$

Estimate azimuth / elevation angles from phase differences / amplitudes at the receive antennas of the phased array

RADAR ANGULAR MEASUREMENT TECHNOLOGY

- *d* Physical distance between antennas
- $\Delta \varphi$ Phase difference
- α Angle of arrival
- λ wavelength

$$\alpha = \sin^{-1}\left(\frac{\lambda \cdot \Delta \varphi}{2\pi d}\right)$$

$$\Delta \varphi_1 \neq \Delta \varphi_2 \neq \Delta \varphi_3 \neq \Delta \varphi_4 \neq \Delta \varphi_5$$

Phase estimation is wrong

RADAR ANGULAR MEASUREMENT TECHNOLOGY

Measuring the angle error does not lead to useful results, if:

- I The radar is slightly moved.
- I The distance between the antennas is changed.
- Another algorithm is used for angle of arrival estimation during post processing.

Or, more general, if:

Another radar / radome combination is used.

An alternative method has to be used.

R&S®QAR – Quality Automotive Radome Tester

R&S®QAR

R&S®QPS201 (Denver Airport)

QUICK COMPARISON OF RADOME SUPPLIER QUALITY

► Ford Radome Supplier 1

► Ford Radome Supplier 2

QUICK COMPARISON OF RADOME SUPPLIER QUALITY

► Ford Radome Supplier 1

► Ford Radome Supplier 2

VEHICLE-IN-THE-LOOP TESTING BRINGS THE ROAD INTO THE LAB – PARTNERSHIP WITH AVL

THANK YOU FOR YOUR ATTENTION

COMPANY RESTRICTED

R. 19. 19
