# Design and Implementation of SiC In Future Electrical Vehicle and Power System

Wolfspeed. 2023

WOLFSPEED CONFIDENTIAL & PROPRIETARY © 2021 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc.

## AGENDA

- Wolfspeed New 200mm FAB
- Market adoption of Silicon Carbide
- Electric Vehicle Charger Market Summary
- Topology selection and reference design
- Wolfspeed new product/portfolio
- Supporting tools

## **MOHAWK VALLEY FAB:**

#### FIRST, LARGEST, AND ONLY 200 MM SILICON CARBIDE WAFER FABRICATION FACILITY



The fab's 200mm Silicon Carbide wafers are revolutionizing the semiconductor industry, allowing for greater power and efficiency, and leading the way to a more sustainable future.

WOLFSPEED CONFIDENTIAL & PROPRIETARY © 2021 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc.

## THE JP FAB – WORLD'S LARGEST SILICON CARBIDE CRYSTAL GROWTH FACILITY





Wolfspeed Durham: currently the world's largest Silicon Carbide crystal growth facility

#### Key JP Fab Takeaways

- Site in excess of 400 acres; using 250 acres
- Between 1.5M-1.7M sq ft in the first phase
- Greater than 10x the current manufacturing capacity of the Durham facility
- This facility will be highly automated with an enhanced level of robotic processing, balanced with worker amenities

## BUILDING LARGEST, STATE OF THE ART, AUTOMATED 200MM SILICON CARBIDE FOOTPRINT TO BEST SERVE INDUSTRY'S TOP CUSTOMERS



#### The JP Fab

- **10x** increase in Crystal Growth capacity at scale
- 200mm Wafers
- · Highly automated



#### **Mohawk Valley**

- 200mm Wafers
- · Highly automated



#### **Planned Saarland Germany Fab**

- 200mm Wafers
- · Highly automated

#### **Investing \$6.5B**

## WOLFSPEED IS THE LEADING PURE PLAY, VERTICALLY INTEGRATED SILICON CARBIDE COMPANY



#### Wolfspeed sells SiC wafers and devices

Wolfspeed's vertical integration and 30+ years of experience provide significant competitive advantage

## **KEY PARAMETERS COMPARISON SI VS. SIC VS. GAN**



- **SiC** excels in high voltage, high power and high temperature applications. Low conduction losses boost total efficiency
- **GaN** has the best switching loss performance although total efficiency may suffer due to conduction losses
- Si is well understood, easy to drive and suitable for less demanding applications

## **GAN VS SIC : RDSON AND JUNCTION TEMPERATURE VARIATION**



A decent generic chart shown typical MOSFET Rdson change over temperature

While data sheets show Rdson at 25C, designers have to use Rdson at real junction temperatures – 120C to 140C

#### Example:

40mO Si or GaN device could be >80mO hot 60mO SiC device will be 80mO hot

#### **Rdson correlates to I<sup>2</sup>R loss which is CONDUCTION LOSS So our 60mO is an equivalent to 40mO for Si and GaN**

## **MARKET ADOPTION OF SILICON CARBIDE**

Electrical Vehicle (EV) FAST Charging/OBC/Traction inverter

Where : >3.3KW PFC, DC-DC, DC-AC Why : Integration(all in one), Driver mileage, High efficiency

#### ✓ PV String Inverters

Where : 30kW and higher MPPT booster and inverter Why : Power density, system efficiency, system weight

#### ✓ Energy Storage System

Where : 25kW and higher PFC, charging, DC-DC Why : Power density, system efficiency and scalability

#### ✓ Offline Switch Mode Power Supply

Where : >1KW PFC, DC-DC for server and data center Why : Thermal performance, Power density, system efficiency

✓ Industrial Motor and Motion

Where : >1kW motor drive inverters, embedded driver Why : Small size, High integration, Immunity



## **Topology selection and reference design** *Wolfspeed.*

WOLFSPEED CONFIDENTIAL & PROPRIETARY © 2021 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc.

## FULL SYSTEM SILICON VS. SILICON CARBIDE IN 22kW BI-DIRECTIONAL DC FAST CHARGERS



#### Wolfspeed reduces losses by 42% with 51% greater power density at lower system costs

## **OFF BOARD DC POWER SYSTEM ARCHITECTURE AND ANALYSIS**



3 Phase bi-directional AFE using 1200V SiC MOSFETs for 800V Battery

- 800V DC Link
- 45kHz operating frequency
- Peak efficiencies of 98.5%
- Power density of >4.6kW/L
- THD <5%
- PF > 0.99

୲ଷ⊦



https://www.wolfspeed.com/crd-22ad12n

Full bridge CLLC topology using 1200V SiC MOSFETs for 800V Battery

- 135-250kHz High operating frequency
- Peak Efficiencies of 98.5%
- Power Density of 8kW/L
- Flexible output voltage



## 22kW HIGH EFFICIENCY BI-DIRECTIONAL AC-DC CONVERTER [CRD22AD12N]

| Features            |                                                                           | Tools & Resources                                            |
|---------------------|---------------------------------------------------------------------------|--------------------------------------------------------------|
| Topology            | Three Phase Active Rectifier                                              | Design Files: Schematics, BOM and BOM Analysis, Design Files |
| Input Voltage       | 3-Phase AC Input : 304V AC-456V AC<br>1-Phase AC Input : 180V AC -264V AC | Firmware on request                                          |
| Output              | 650VDC – 800V DC                                                          | • • • • • • • • • • • • • • • • • • •                        |
| Power               | 22kW                                                                      |                                                              |
| Direction           | Bidirectional                                                             |                                                              |
| Peak Efficiency     | >98.5%                                                                    |                                                              |
| Frequency           | 45 kHz                                                                    | VAC<br>LINE SIDE                                             |
| SiC MOSFET's        | 6x C3M0032120K - Discretes                                                |                                                              |
| Control Scheme      | SVPWM (Space Vector Modulated)                                            |                                                              |
| Inductor            | 3x 280uH                                                                  |                                                              |
| Key benefit: High p | ower density and low-cost solution                                        |                                                              |
|                     |                                                                           | AUX<br>POWER<br>CARD<br>CAN<br>CONTROL CARD<br>CONTROL CARD  |

https://www.wolfspeed.com/crd-22ad12n

pcim Europe **Best Paper Award** FINALIST

## AC-DC IGBT VS. SILICON CARBIDE IN 22kW DC FAST CHARGERS





Silicon IGBT Design

Power density 3.5kW/L

IGBT 20kHz





• Peak efficiencies of 98.5%

#### Wolfspeed Silicon Carbide enables 46% less losses for the same costs

## **MOSFET SELECTION FOR AC-DC CONVERTER**



• SiC MOSFETs increase Rdson much less over temp allowing use of a smaller rated SiC device



- Design for full load and high-power continuous power operation
- Select component that favors lower conduction losses



• Hard switched, high current, High frequency operation

 $\oplus \Theta$ 

- Favor packages with low inductance and Kelvin Pin connections



• Select lowest Qrr for faster recovery time and lower losses



## 22kW HIGH POWER DENSITY BI-DIRECTIONAL EV CHARGER – DC-DC [CRD-22DD12N]

#### **Design Specifications**

| Topology       | Resonant CLLC                                                                                                                                         |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input Voltage  | 650V-900V  380V-900V  360V-760V                                                                                                                       |
| Output         | 200V-800V                                                                                                                                             |
| Power          | 22kW– 3Phase   6.6kW – 1 phase                                                                                                                        |
| Direction      | Bidirectional                                                                                                                                         |
| Efficiency     | >98.5%                                                                                                                                                |
| Power Density  | 8kW/L                                                                                                                                                 |
| PWM Frequency  | 140kHz-250kHz                                                                                                                                         |
| SIC MOSFET     | 8x C3M0032120K - Discrete                                                                                                                             |
| Control Scheme | Nom Output : PFM + Phase shift<br>Low Voltage Output : Reconfigurable<br>Adaptive SR control<br>Low DC Link: Half Bridge<br>High DC Link: Full Bridge |
| Magnetics      | 2x PQ Transformers Lm =12.8uH   9.9uH                                                                                                                 |
| Koy bonofite   |                                                                                                                                                       |

#### Key benefits

- Multiple operational modes supports
- DC Link from both 3-Phase AC and Single-Phase AC input
- 200VDC to 800V DC battery range

#### Tools & Resources

- Design Files: Schematics, BOM and BOM Analysis, Design Files
- Firmware on Request



https://www.wolfspeed.com/crd-22dd12n

## DC-DC SILICON VS. SILICON CARBIDE IN 22kW DC FAST CHARGERS



#### Silicon Design

- MOSFET 100kHz
- Power density 3.5kW/L
- Peak efficiency 97.5%



# System Cost Comparison

Switch Passives Driver Thermal

#### Wolfspeed Full SiC Design

- 135-250kHz high operating frequency
- Peak efficiencies of 98.5%
- Power density of 8kW/L
- Flexible output voltage



#### Wolfspeed SiC enables 40% less losses with lower system cost

## **MOSFET SELECTION FOR LLC PRIMARY**



- Longest Coss discharge time in this region. Choose lowest and flattest Coss.
- TO-247-4 and TO-263-7 are preferred due to lower oscillation



- Ŀ∎ŧ L/C Coarasitic intat GND 1000 Other SiC 1000 년 100 0 10 Cise --- Coss ----- Crss 0.1 1 10 100 1000 V<sub>Ds</sub> [V]
- $P(Loss)_{Switching} \alpha$  Magnetizing current which is small for LLC
- Design and optimize at full load conduction loss dominated region



- Lowest Qrr for faster recovery time when operating out of ZVS
- Si MOSFET can be damaged due to poor body diode performance



## **POWER SYSTEM ARCHITECTURE AND ANALYSIS**



20kW Wolfspeed SiC

#### SiC Advantage :

- 1-2% higher efficiency.

- 50% increase in power density,

- Lower system cost (smaller magnetics, less overall system cooling, smaller & cheaper mechanical housing).

15kW IGBT





#### Simplify & Save with SiC

| \$ | E BOM Cost savings 12             | 2-15% | per 30kW    |
|----|-----------------------------------|-------|-------------|
| •  | Increase in power stage efficient | ency  | Up to 2%    |
| KG | Power Density Improvements        |       | Up to 50%   |
| \$ | Charge pole cost                  |       | \$- Lower   |
|    | Charge pole size                  |       | \$- Smaller |

# Wolfspeed Product Portfolio

Wolfspeed.

WOLFSPEED CONFIDENTIAL & PROPRIETARY © 2021 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc.

## WOLFSPEED 600V/650V SIC SCHOTTKY DIODE

|                         |                            | TO-220-2  | TO-220-F2<br>FullPAK | TO-220<br>Isolated | TO-247-3               | TO-252-2  | TO-263-2                            | QFN       | Industrial<br>Automotive<br>New Product |
|-------------------------|----------------------------|-----------|----------------------|--------------------|------------------------|-----------|-------------------------------------|-----------|-----------------------------------------|
| Blocking<br>Voltage (V) | Fwd. Current<br>Rating (A) | Q. 9.     |                      | Caro.              |                        |           |                                     | CHELS     |                                         |
| 650V/600V               | 2                          |           | C3D02060F            |                    |                        | C3D02065E |                                     |           |                                         |
| 650V/600V               | 3                          |           | C3D03060F            |                    |                        | C3D03065E |                                     |           |                                         |
| 650V/600V               | 4                          | C6D04065A | C3D04060F            |                    |                        | C6D04065E |                                     |           |                                         |
| 650V/600V               | 6                          | C6D06065A | C3D06060F            | C3D06065I          |                        | C6D06065E | C3D06060G<br>C6D06065G              | C6D06065Q |                                         |
| 650V/600V               | 8                          | C6D08065A |                      | C3D08065I          |                        | C6D08065E | C3D08060G<br>C6D08065G<br>E3D08065G | C6D08065Q |                                         |
| 650V/600V               | 10                         | C6D10065A |                      | C3D10065I          |                        | C6D10065E | C3D08060G<br>C6D10065G              | C6D10065Q |                                         |
| 650V                    | 12                         | C3D12065A |                      |                    |                        |           |                                     |           |                                         |
| 650V                    | 16                         | C3D16065A |                      |                    | C6D16065D              |           |                                     |           |                                         |
| 650V                    | 20                         | C6D20065A |                      |                    | C6D20065D<br>E3D20065D |           | C6D20065G                           |           |                                         |
| 650V                    | 30                         |           |                      |                    | C3D30065D<br>E3D30065D |           |                                     |           |                                         |
| 650V                    | 50                         |           |                      |                    | C6D50065D              |           |                                     |           |                                         |

## WOLFSPEED 1200V SIC SCHOTTKY DIODE

|                            | TO-220-2               | TO-220-F2<br>FullPAK | TO-220<br>Isolated | TO-247-3               | TO-252-2  | TO-263-2  | TO-247-2                | Industrial<br>Automotive<br>New Product |
|----------------------------|------------------------|----------------------|--------------------|------------------------|-----------|-----------|-------------------------|-----------------------------------------|
| Fwd. Current<br>Rating (A) |                        |                      | 11.9.              | 1 and                  |           |           | 2 (1)<br>2 (1)<br>2 (1) |                                         |
| 2                          | C4D02120A              |                      |                    |                        | C4D02120E |           |                         |                                         |
| 5                          | C4D05120A              |                      |                    |                        | C4D05120E |           |                         |                                         |
| 8                          | C4D08120A              |                      |                    |                        | C4D08120E |           |                         |                                         |
| 10                         | C4D10120A<br>E4D10120A |                      |                    | C4D10120D              | C4D10120E |           | C4D10120H               |                                         |
| 15                         | C4D15120A              |                      |                    | C4D15120D              |           |           | C4D15120H               |                                         |
| 20                         | C4D20120A<br>E4D20120A |                      |                    | C4D20120D<br>E4D20120D |           | E4D20120G | C4D20120H               |                                         |
| 30                         |                        |                      |                    | C4D30120D              |           |           |                         |                                         |
| 40                         |                        |                      |                    | C4D40120D              |           |           |                         |                                         |

## **WOLFSPEED 650V SIC MOSFET**



## **WOLFSPEED 1200V SIC MOSFET**

|                         | Forward Current        | TO-247-3<br>'D'            | ТО-247-4<br>'К'            | TO-263-7<br>'J' |
|-------------------------|------------------------|----------------------------|----------------------------|-----------------|
| Rds(ON)<br>25°C<br>(mΩ) | Rating<br>100°C<br>(A) |                            |                            |                 |
| 16                      | 85                     | C3M0016120D                | C3M0016120K                |                 |
| 21                      | 74                     | C3M0021120D                | C3M0021120K                |                 |
| 32                      | 48                     | C3M0032120D                | C3M0032120K                | C3M0032120J1    |
| 40                      | 48                     | C3M0040120D                | C3M0040120K                |                 |
| 75                      | 12.7                   | C3M0075120D<br>E3M0075120D | C3M0075120K<br>E3M0075120K | C3M0075120J     |
| 160                     | 17                     | C3M0160120D                |                            | C3M0160120J     |
| 350                     | 5                      | C3M0350120D                |                            | C3M0350120J     |



## WOLFSPEED 1700V SIC MOSFET

|                         | Forward Current       | TO-247-3<br>'D' | TO-247-4 Plus<br>'P' | TO-263-7<br>'با | Industrial<br>Automotive<br>New Produc |
|-------------------------|-----------------------|-----------------|----------------------|-----------------|----------------------------------------|
| Rds(ON)<br>25°C<br>(mΩ) | Rating<br>25°C<br>(A) |                 |                      |                 |                                        |
| 45                      | 72                    | C2M0045170D     | C2M0045170P          |                 |                                        |
| 80                      | 40                    |                 | C2M0080170P          |                 |                                        |
| 1000                    | 5                     | C2M1000170D     |                      | C2M1000170J     |                                        |

VOLFSPEED CONFIDENTIAL & PROPRIETARY 🖻 2021 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc

## **Reference Design Overview**

### Full Bi-directional OBC system

• 6.6kW bi-directional OBC



- Using C3M 650V SiC MOSFET
- Highest power density (3.3kW/L) Peak efficiency = 97%
- Full paper design and limited number of HW units
- 22kW bi-directional OBC



#### 22kW Bi-Directional DCDC Converter

- Using C3M 1200V SiC MOSFET
- Highest power density (8kW/L)
- Peak efficiency = 98.6%
- Full paper design and limited number of HW units

#### 22kW Bi-Directional ACDC Converter

- Using C3M 1200V SiC MOSFET
- Highest power density (4.6kW/L)
- Peak efficiency = 98.6%
- AVAILABLE SOON



## Uni-directional AC/DC block

• 2.2kW bridgeless totem-pole PFC



- 2 x C3M0060065D + 2 x Si PN diode
  - Peak efficiency = 98.5%

## Uni-directional DC/DC block

6.6kW LLC DC/DC Converter



- 4 x C3M0060065D + 4 x C6D10065A
- Peak efficiency > 98%
- ZVS enables >500kHz switching frequency



DC/DC





AC Source

## **REFERENCE DESIGN AND SUPPORTING TOOL**

**Electrical simulation** 





https://www.wolfspeed.com/speedfit

https://go.wolfspeed.com/all-models







https://www.wolfspeed.com/power/ products/reference-designs



## **Reference designs**

| Application                            | Reference design name                                                                 | Topology                   |
|----------------------------------------|---------------------------------------------------------------------------------------|----------------------------|
| Automotive                             | 6.6 kW Bi-Directional EV On-Board<br>Charger                                          | AC to DC, DC to<br>AC      |
| Automotive                             | 22kW Bi-directional High Efficiency<br>DC/DC Converter                                | Bi-Directional<br>DC to DC |
| Automotive<br>&<br>Renewable<br>Energy | 22kW Bi-directional High Efficiency<br>Active Front End (AFE) Converter               | Bi-Directional<br>AC to DC |
| Renewable<br>Energy                    | 60 kW Interleaved Boost Converter                                                     | DC to DC                   |
| Server Power<br>supply                 | 2.2 kW High Efficiency (80+<br>Titanium) Bridgeless Totem-Pole<br>PFC with SiC MOSFET | AC to DC                   |
| Server Power<br>supply                 | 6.6 kW High Frequency DC-DC<br>Converter                                              | DC to DC                   |

# **THANK YOU**

WOLFSPEED CONFIDENTIAL & PROPRIETARY © 2021 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc.