FROM STEPPED SCAN TO WIDEBAND TIME DOMAIN SCAN FOR COMMERCIAL TESTING

Tobias Groß Product Management EMI Test Receiver

STANDARDIZATION

MEASUREMENT INSTRUMENTATION STANDARD

CISPR 16-1-1 FFT-BASED MEASURING RECEIVERS

FFT-based measurement receiver for compliance testing

"instrument such as a tunable voltmeter, an EMI receiver, a spectrum analyzer or an FFT-based measuring instrument, with or without preselection, that meets the relevant parts of this standard"

CISPR 16-1-1 – MEASURING APPARATUS

Gapless measurement without blind time and signal loss

STEPPED SCAN ON PULSED SIGNAL

PULSE SPECTRUM

► Example:

$$t = 1 \ \mu s \quad \Rightarrow \quad \frac{1}{t} = 1 \ MHz$$

 $T = 100 \ \mu s \quad \Rightarrow \quad \frac{1}{T} = 10 \ kHz$

PULSE SPECTRUM (DURATION)

Period: 100 µs, Duration: 100 ns

Level Difference: $20 \cdot \log_{10} \left(\frac{4000 \text{ } ns}{100 \text{ } ns}\right) \approx 32 \text{ } dB$ (changed Dutycycle)

Period: 100 µs, Duration: 500 ns

Period: 100 µs, Duration: 4000 ns

PULSE SPECRUM

1/T ≈ 100 kHz

Rohde & Schwarz

STEPPED SCAN @ 1 MS MEASUREMENT TIME

STEPPED SCAN @ 2 MS MEASUREMENT TIME

STEPPED SCAN @ 2 MS MEASUREMENT TIME

TIME DOMAIN SCAN @ 2 MS MEASUREMENT TIME

FFT BASED TIME DOMAIN SCAN

FFT-BASED TEST RECEIVER

Frequency domain Merging the spectral distributions of all frequency blocks

Time-domain Sampling of the filtered signals with high sampling rate/resolution and windowing

Fast-Fourier transform Signal transformation of the filtered signals from time to frequency domain in blocks

R

STEPPED SCAN

BS)

LEAKAGE EFFECT

Continued periodical signal (infinite)

Windowed, finite time interval of signal

LEAKAGE EFFECT – WINDOWING

FREQ (HZ)

➔ Gaussian window suppresses the sidelobes the best to achieve optimal accuracy

FFT OF INTERMITTENT SIGNALS

80

Reference: TR CISPR 16-3 © IEC:2010(E)

200 HZ RESOLUTION BANDWIDTH

• Trace points: $\frac{30 MHz - 150 kHz}{\frac{200 Hz}{4}} = 597000$

More points than displayable on screen (~ 1000)

Zoom to 9.1 MHz ... 9.12 MHz

Rohde & Schwarz

COMPARISON WITH SPECTRUM ANALYZER SWEEP

Period: 2 ms, Duration: 1 µs

Rohde & Schwarz

Rohde & Schwarz

Period: 2 ms, Duration: 1 µs

 ► Trace points: ^{30 MHz - 150 kHz}/(2) ≈ 6633 (Minimum requirement by CISPR 16-2)
► Measurement time: 6633 · 2 ms ≈ 13.27 s

6633 pts

50.0 kH

2.99 MHz/

30.0 MHz

FIND PULSE PERIOD IN ZERO SPAN MODE

► Single frequency displayed over time

x-axis in time

WIDEBAND TIME DOMAIN SCAN

KEY FEATURES OF NEW ESW WIDEBAND OPTION

970 MHz FFT bandwidth

- 100/120 kHz RBW
- 30 MHz 1 GHz

Real-time

Gapless measurements in receiver spectrogram

CISPR detectors

Simultaneous measurement of CISPR detectors at full bandwidth

Pulse resolution 5 Hz - Fully compliant in CISPR Band D (300 MHz - 1 GHz)

PRESELECTION FILTER

Pulse in frequency domain

PARALLEL MEASURED FFT-SEGMENTS

CONCEPT OF NEW ESW WIDEBAND OPTION

Parallel signal paths cover CISPR bands C and D

All eight paths have their own preselection and preamplifier to achieve maximum dynamic range

Parallel A/D converters

Split signal path increases dynamic range for pulses

Massive computing power to calculate the spectrum in **real-time**

ESW EQUIPPED WITH NEW WIDEBAND OPTION

ADVANTAGES OF WIDEBAND TESTING

Commercial

- Direct QP measurement
- Higher speed
- Better insight for debugging

MIL

- Longer Meas Time
- Probability of intercept
- Wide spectrogram for analysis

Automotive

- Greater insight for debugging
- Higher speed

COMMERCIAL TESTING

- Challenging DUT's
 - Short operating modes
 - High complexity
- Direct QP measurement
 - CISPR Band C+D at one shot

CONSTANT TURNTABLE ROTATION

IN-SITU COMMERCIAL TESTING

► CISPR 37

- Direct QP measurement recommended (instead of prescan → critical frequency selection → final scan)
 - High variability in ambient noise
 - Reproducability
 - Constant operating mode

WIDEBAND FFT

► Evolution towards very wide FFT bandwidth for faster measurement

