Mobile Network Testing

SAFER ROADS BY VERIFYING CRITICAL C-V2X INFRASTRUCTURE AND COMMUNICATIONS

Manuel Mielke Product Manager, Drive Test Scanners

ROHDE&SCHWARZ

Make ideas real

Arnd Sibila Technology Marketing Manager MNT

CONTENT

► C-V2X: the "why" and the "what"

- ► C-V2X pain points
- ► A bit of technology
- ► Real field measurement results
- C-V2X Test Solutions
- Conclusion

Road safety globally

Global status of road safety:

- Each year, 1.35 million people are killed on roadways
- Every day, almost 3,700 people are killed globally in crashes. More than half of those killed are vulnerable road users (pedestrians, motorcyclists, or cyclists).

Source: Global Status Report on Road Safety 2018 (WHO)

- ► Higher "rates of road traffic death" in low- and middle-income countries
- It is estimated that fatal and nonfatal crash injuries will cost the world economy approximately \$1.8 trillion dollars from 2015–2030.

Source: The global macroeconomic burden of road injuries: estimates and projections for 166 countries (Chen S, Kuhn M, Prettner K, Bloom DE; article 2019)

132 (out of 175 participating) countries have national strategies for road safety that are funded

- 109 countries have national targets for the reduction of road traffic deaths
- A true global social objective!

Rohde & Schwarz

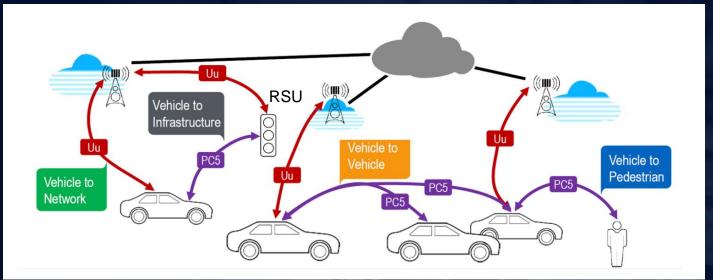
Status in Europe:

Vision Zero:

"Our goal is to reduce road deaths to zero by 2050"


What is the status towards this goal?

 Among other measures C-V2X should contribute to this goal
C-V2X is a governmental task


Rohde & Schwarz

What is C-V2X (CELLULAR-VEHICLE-TO-EVERYTHING)? Connected mobility use cases and their key performance indicators

C-V2X network architecture - ubiquitous connectivity

RSU: Road Side Unit

V2N: Vehicle to network (Uu interface)

V2V: Vehicle to vehicle (Sidelink, PC5)V2I: Vehicle to infrastructure (Sidelink, PC5)V2P: Vehicle to pedestrian (Sidelink, PC5)

Rohde & Schwarz

TECHNOLOGY SOLUTION FOR C-ITS MESSAGE TYPES AND SYSTEM REQUIREMENTS

Message Type EU	0	Message Type USA		Message Type China	*)
Cooperative Awareness W (CAM) Vehicle status information (ETSI EN 302 637-2) Decentralized Environmer Notification (DENM) Information about specific e (ETSI EN 302 637-3)	nt	Basic Safety Message (Vehicle status information Optional event flags (SAE J2735, SAE J2945)	1	Basic Safety Message (B Vehicle status information (T/CSAE 53-2017)	SM)

End-to-End Latency: 20ms – 500ms, Message Repetition: 1Hz – 10Hz, Maximum Range: 300m – 1km Maximum Speed: 250km/h (absolute), 500km/h (relative)

C-ITS: Cooperative Intelligent Transport Systems

Rohde & Schwarz

C-V2X APPLICATIONS OVERVIEW

Category	Communication type	Abbreviation	Service
safety	V2V	FCW	Forward Collision Warning
	V2V/V2I	ICW	Intersection Collision Warning
	V2V/V2I	LTA	Left Turn Assistant
((∕))	V2	BSW	Blind Spot Warning/Lane Change Warning
	V2V	DNPW	Do Not Pass Warning
	V2V	EBW/EEBL	Emergency Brake Warning
· · · · · ·	V2V	AVW	Abnormal Vehicle Warning
	V2V	CLW	Control Loss Warning
	V2V/V2I	HLW	Hazardous Location Warning
	V2I	SLW	Speed Limit Warning
	V2I	SVW	Signal Violation Warning
	V2I/V2P (P2X)	VRUCW	Vulnerable Road User Collision Warning
	V2V/V2I	SDS	Sensor Data Sharing
	V2V/V2I	CLC	Cooperative Lane Change
	V2P (P2X)	VRUSP	Vulnerable Road User Safe Passing
	V2I	CVM	Cooperative Vehicle Merge
	V2I	CIP	Cooperative Intersection Passing
efficiency	V2I	GLOSA	Green Light Optimal Speed Advisory
65	V2I	IVS	In-Vehicle Signage
	V2I	TJW	Traffic Jam Warning
((分))	V2V/V2I	EVW	Emergency Vehicle Warning
	V2I	CHPVP	Cooperative High Priority Vehicle Passing
4-	V2I	CVM	Cooperative Vehicle Merge
	V2I	CIP	Cooperative Intersection Passing
	V2I	RTS	Road Tolling Service
	V2I	DLM	Dynamic Lane Management
information	V2I	VNFP	Vehicle Near-Field Payment
and management	V2I	GSPA	Guidance Service In Parking Area
	V2I	DDS	Differential Data Service
((ដុ))	V2I	PDC	Probe Data Collection
<u>(</u> <u></u>	V2I	RTS	Road Tolling Service
	V2I	DLM	Dynamic Lane Management
	V2V	CPM	Cooperative Platooning Management

Note: Applications may vary according to region.

Rohde & Schwarz

C-V2X APPLICATIONS OVERVIEW

Category	Communication type	Abbreviation	Service	
safety	V2V V2V/V2I V2V/V2I V2 V2V V2V V2V V2V V2V V2V V2V/V2I V2I V2I/V2P (P2X) V2V/V2I V2V/V2I V2V/V2I V2V/V2I V2V/V2I V2V/V2I V2V/V2I V2V/V2I V2V/V2I V2I V2I V2I V2I V2I V2I V2I V2I V2I	FCW ICW LTA BSW DNPW EBW/EEBL AVW CLW HLW SLW SVW VRUCW SDS CLC VRUSP CVM CIP	Forward Collision Warning Intersection Collision Warning Left Turn Assistant Blind Spot Warning/Lane Change Warning Do Not Pass Warning Emergency Brake Warning Abnormal Vehicle Warning Control Loss Warning Hazardous Location Warning Signal Violation Warning Sugnal Violation Warning Vulnerable Road User Collision Warning Sensor Data Sharing Cooperative Lane Change Vulnerable Road User Safe Passing Cooperative Vehicle Merge Cooperative Intersection Passing	Vehicle to pedestrian (V2P) Vulnerable road user collision warning
efficiency	V2I V2I V2V/V2I V2V/V2I V2I V2I V2I V2I V2I	GLOSA IVS TJW EVW CHPVP CVM CIP RTS DLM	Green Light Optimal Speed Advisory In-Vehicle Signage Traffic Jam Warning Emergency Vehicle Warning Cooperative High Priority Vehicle Passing Cooperative Vehicle Merge Cooperative Intersection Passing Road Tolling Service Dynamic Lane Management	
information and management	V21 V21 V21 V21 V21 V21 V21 V21 V2V	VNFP GSPA DDS PDC RTS DLM CPM	Vehicle Near-Field Payment Guidance Service In Parking Area Differential Data Service Probe Data Collection Road Tolling Service Dynamic Lane Management Cooperative Platooning Management	

Note: Applications may vary according to region.

Rohde & Schwarz Safer roads

C-V2X APPLICATIONS OVERVIEW

Category	Communication type	Abbreviation	Service
safety	V2V V2V/V2I	FCW ICW	Forward Collision Warning Intersection Collision Warning
	V2V/V2I V2	LTA BSW	Left Turn Assistant Blind Spot Warning/Lane Change Warning
	V2 V2V	DNPW	Do Not Pass Warning
-	V2V	EBW/EEBL	Emergency Brake Warning
	V2V V2V	AVW CLW	Abnormal Vehicle Warning Control Loss Warning
	V2V/V2I	HLW	Hazardous Location Warning
	V2I V2I	SLW SVW	Speed Limit Warning Signal Violation Warning
	V2I/V2P (P2X)	VRUCW	Vulnerable Road User Collision Warning
	V2V/V2I V2V/V2I	SDS CLC	Sensor Data Sharing
	V2V/V2I V2P (P2X)	VRUSP	Cooperative Lane Change Vulnerable Road User Safe Passing
	V2I	CVM	Cooperative Vehicle Merge
	V2I	CIP	Cooperative Intersection Passing
efficiency	V2I	GLOSA	Green Light Optimal Speed Advisory
	V2I V2I	IVS TJW	In-Vehicle Signage Traffic Jam Warning
	V2V/V2I	EVW	Emergency Vehicle Warning
	V2I	CHPVP	Cooperative High Priority Vehicle Passing
	V2I V2I	CVM CIP	Cooperative Vehicle Merge Cooperative Intersection Passing
	V2I	RTS	Road Tolling Service
	V2I	DLM	Dynamic Lane Management
information	V2I	VNFP	Vehicle Near-Field Payment
and management	V2I	GSPA	Guidance Service In Parking Area
	V2I V2I	DDS PDC	Differential Data Service Probe Data Collection
(U)	V2I	RTS	Road Tolling Service
	V2I V2V	DLM CPM	Dynamic Lane Management Cooperative Platooning Management
Noto: Applicatio	ons may vary according to		Cooperative raccoming management

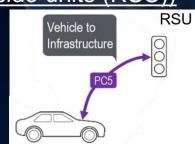
teres reprised one may rary according to re

Rohde & Schwarz

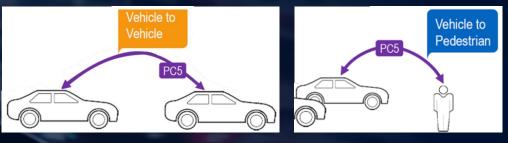
CONTENT

- ► C-V2X: the "why" and the "what"
- C-V2X pain points
- ► A bit of technology
- ► Real field measurement results
- C-V2X Test Solutions
- Conclusion

RSRP: Reference Signal Receive Power TCU: Telematics Control Unit


C-V2X / PC5 communication paths and what are the pain points?

V2V / V2P direct communiction (no infrastructure involved)

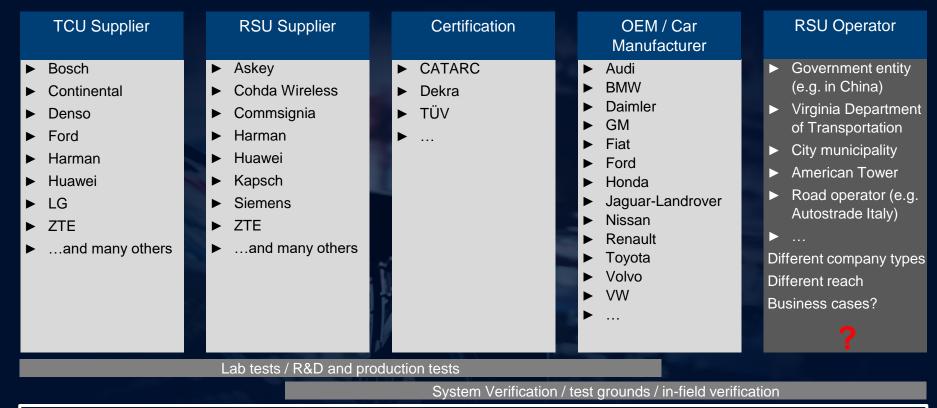

- How far the vehicles can see each other? Coverage – RSRP?
- What PC5 messages the cars transmit?
- PC5 message sent/received in time?
- Do the vehicles (TCUs) behave correctly in field compared to a reference?

V2I communication (via infrastructure – road side units (RSU))

- What is the coverage of the RSU RSRP?
- ► Is there any interference?
- Are the RSU PC5 messages correct?

RSU locations: Intersections (traffic lights), construction sites, ...

Business pain points: who is paying for what?


V2V / V2P direct communication

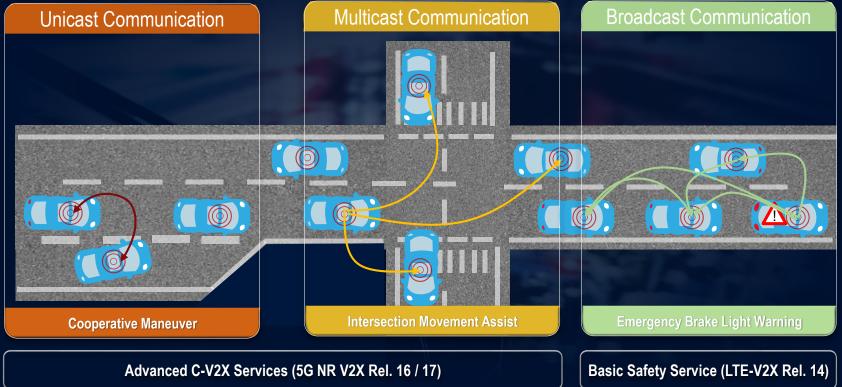
- HW/SW: Telematics Control Units (TCU) embedded in vehicles incl. antenna system
- Buyers of vehicles may pay for enhanced safety features (and efficiency and convenience)
- But V2V will probably not happen without V2I

V2I communication via RSUs

- HW/SW: Road Side Units (RSU) connected to traffic management systems
- Who should pay for this critical C-V2X infrastructure?
 - No RSU operator gets money from subscribers / vehicles
 - Ecosystem ?

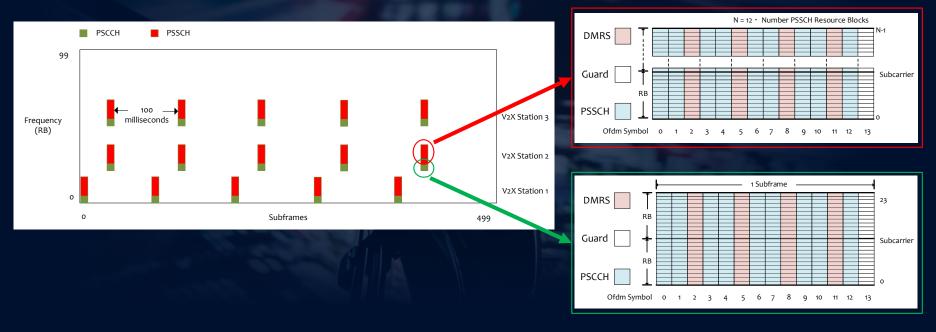
Ecosystem: who are the players in C-V2X?

Road Safety is a governmental task (like traffic lights) – maybe indirect payment via taxes


Rohde & Schwarz

CONTENT

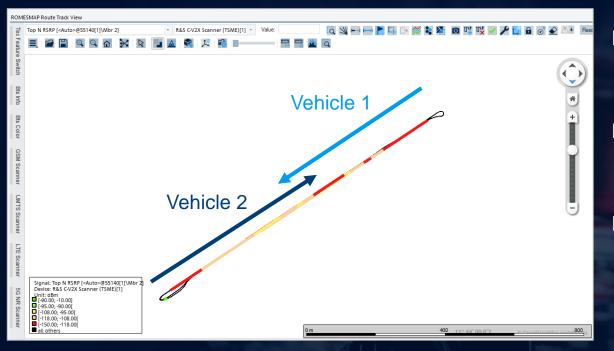
- ► C-V2X: the "why" and the "what"
- ► C-V2X pain points
- ► A bit of technology
- ► Real field measurement results
- C-V2X Test Solutions
- Conclusion


Communications types in 4G LTE and 5G NR to support automated driving

Rohde & Schwarz

C-V2X / PC5 measurements for each PSCCH / PSSCH occurance

- ► LTE-based: Broadcast, no bi-directional communication
- Example of V2X stations broadcasting messages with a period of 100 ms

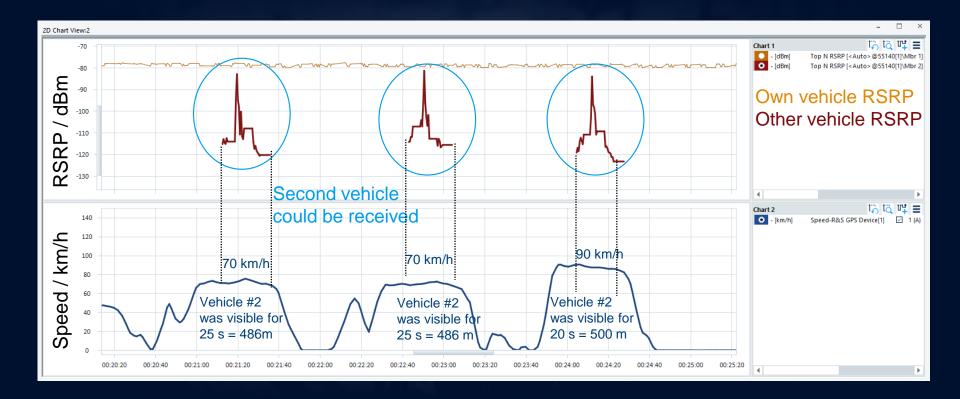


CONTENT

- ► C-V2X: the "why" and the "what"
- ► C-V2X pain points
- ► A bit of technology
- ► Real field measurement results
- C-V2X Test Solutions
- Conclusion

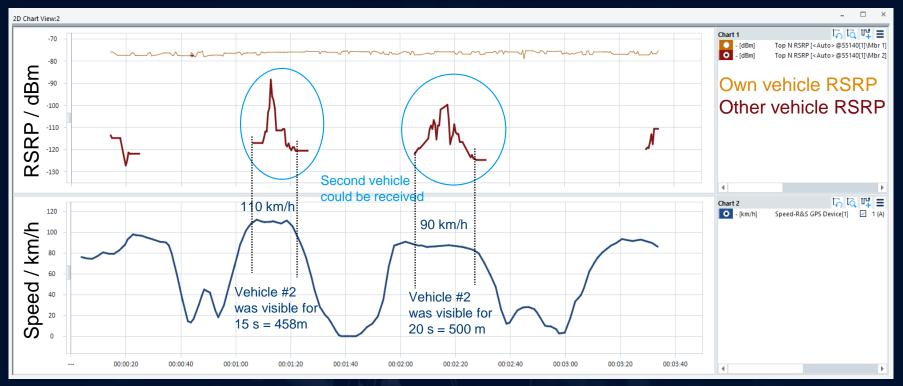
Vehicle approaching scenario on proving ground - RSRP analysis

Scanner was placed in vehicle #1 with RX antenna on the top of the roof


The trial was conducted with different car driving speeds (same speed for both cars)

High doppler shift due to opposite driving directions of the vehicles

Question: What is the C-V2X / PC5 coverage?


Rohde & Schwarz

Vehicle approaching scenario 90 / 70 kmph - RSRP Analysis

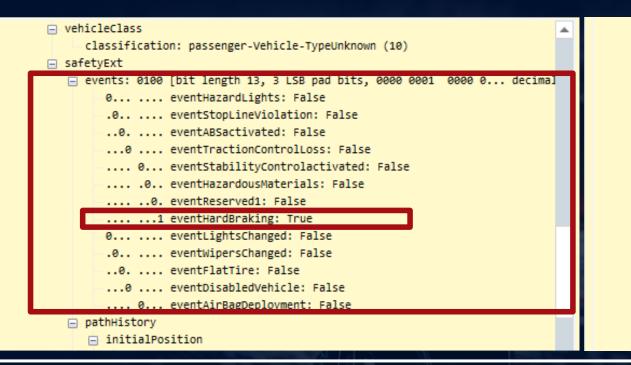
Rohde & Schwarz

Vehicle approaching scenario 110 / 90 kmph - RSRP Analysis

Approaching vehicle C-V2X messages can be received in the range of 450 to 500m (line of sight)
Non-line of sight scenarios (street canyons) to be analyzed

Rohde & Schwarz

Support of C-V2X Scanning in ROMES4 C-V2X scanner message view and ITS message decoding


- Every scanner measurement is represented by a line in the C-V2X Scanner Message View
- By double-clicking on one line, message details will open in a dedicated window

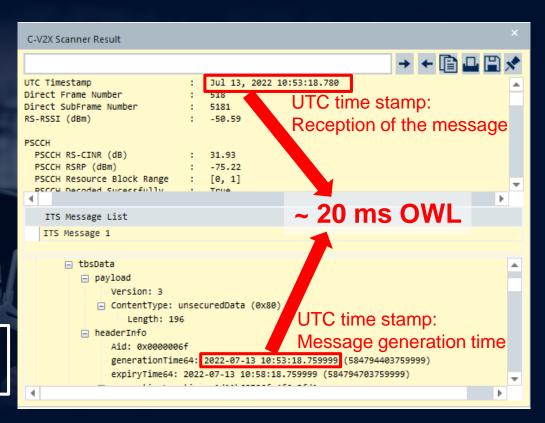
C-V2X Scanner Message View								
	UTC Timestamp	L2 Mac Source ID	RSSI (dBm)	PSCCH CINR (dB)	PSCCH RSRP (dBm)	PSSCH CINR (dB)	PSSCH RSRP (dBm)	
P	Q	P	P	P	P	Q	Q	
2341	Apr 11, 2022 09:54:4	45007	-77.10	12.37	-104.19	12.37	-105.23	
2342	Apr 11, 2022 09:54:4	45001	-66.30	19.83	-96.43	19.83	-94.08	
2343	Apr 11, 2022 09:54:4	45002	-66.55	17.54	-96.57	17.54	-94.34	
2344	Apr 11, 2022 09:54:4	45003	-66.77	17.47	-96.43	17.47	-94.55	
2345	Apr 11, 2022 09:54:4	45004	-76.68	11.71	-105.96	11.71	-104.69	
2346	Apr 11, 2022 09:54:4	45005	-85.21	0.18	-116.70	0.18	-114.92	
2347	Apr 11, 2022 09:54:4	45006	-67.51	17.35	-95.89	17.35	-95.35	
2348	Apr 11, 2022 09:54:4	45007	-72.77	15.18	-100.91	15.18	-100.68	
2349	Apr 11, 2022 09:54:4	45001	-73.93	14.07	-102.98	14.07	-101.81	
2350	Apr 11, 2022 09:54:4	45002	-74.19	13.14	-103.19	13.14	-102.08	
2351	Apr 11, 2022 09:54:4	45003	-74.36	13.99	-103.48	13.99	-102.25	
2352	Apr 11, 2022 09:54:4	45004	-83.47	4.36	-113.36	4.36	-112.33	
2353	Apr 11, 2022 09:54:4	45006	-75.12	12.08	-104.75	12.08	-103.04	
2354	Apr 11, 2022 09:54:4	45007	-80.10	6.94	-110.34	6.94	-108.33	
2355	Apr 11, 2022 09:54:4	45001	-69.32	18.35	-97.41	18.35	-97.17	
2356	Apr 11, 2022 09:54:4	45002	-69.30	18.68	-97.59	18.68	-97.15	
2357	Apr 11, 2022 09:54:4	45003	-69.21	17.24	-97.67	17.24	-97.04	
2358	Apr 11, 2022 09:54:4	45004	-78.64	9.60	-107.89	9.60	-106.77	
2359	Apr 11, 2022 09:54:4	45005	-86.35	-1.19	-117.73	-1.19	-117.31	
2360	Apr 11, 2022 09:54:4	45006	-68.77	16.76	-97.58	16.76	-96.61	

All ITS stacks (China, US, Europe) supported in ROMES4

C-V2X Scanner Result	×
	→ ← 🗈 🗳 🖈
UTC Timestamp	: May 11, 2022 21:29:55.720
Direct Frame Number	: 20
Direct SubFrame Number	: 202
RS-RSSI (dBm)	: -65.90
PSCCH	
	: 16.50
	: -73.50
PSCCH Resource Block Range	
PSCCH Decoded Sucessfully	: True
PSSCH PSSCH RS-CINR (dB)	: 18.70
	: -75.90
PSSCH Resource Block Range	
PSSCH Decoded Sucessfully	· [0, 15]
4	•
ITS Message List	
ITS Message 1	
vehicleClass	
	ger-Vehicle-TypeUnknown (10)
safetyExt	
events: 0100 [bit leng 0 eventHaza	th 13, 3 LSB pad bits, 0000 0001 0000 0 decimal
	LineViolation: False
0 eventABSa	
	tionControlLoss: False
	vilityControlactivated: False rdousMaterials: False
1 eventHard	
0 eventLigh	tsChanged: False
.0 eventWipe	
eventFlat	
0 eventbisa	abledVehicle: False MagDeployment: False
□ pathHistory	
initialPosition	
🖃 pos	
	49 (48.1259149 degrees)
long: 1161248	331 (11.6124831 degrees)

ITS message decoding is available

pos lat: 481259149 (48.1259149 degrees) long: 116124831 (11.6124831 degrees) elevation: 0 (0.0 m) transmission: unavailable (7) speed: 0 (0.00 m/s, 0.00 mph) heading: 10841 (135.51 degrees) accelset long: 2001 (unavailable) lat: 2001 (unavailable) vert: -127 (unavailable) yaw: 32767 (327.67 degree/s) brakes brakePadel: unavailable (0) traction: unavailable (0) abs: unavailable (0) scs: unavailable (0) brakeBoost: unavailable (0) auxBrakes: unavailable (0) size width: 190 (1.90 m) length: 480 (4.80 m)

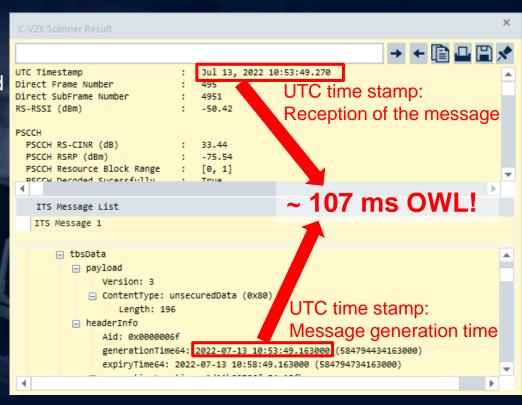

ITS message decoding in combination with RF measurements helps verifying C-V2X communication

Rohde & Schwarz

One-way-latency reference measurements

- Delay between message generation (car 1) and reception (car 2)?
- Time delay can vary due to message queuing on the TCU and multipath propagation (RF level)

C-V2X is safety relevant and latency shall be under control!



One-way-latency reference measurements – example 2

 Depending on the message priority (ProSe Per Packet Prioritiy – PPPP) a certain latency needs to be ensured
→ 5G AA / SAE / ...

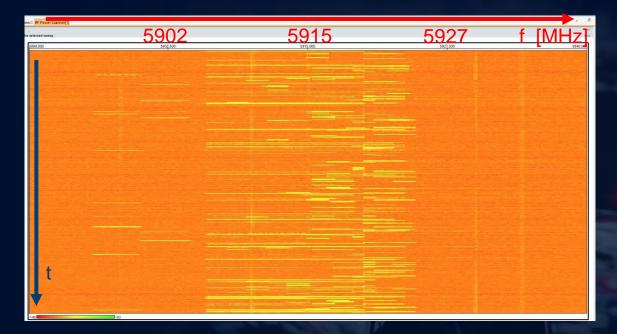
C-V2X Scanner Result										×	
					→	+	ľ	П	P	*	
PSSCH Decoded Sucessfully	÷	True									
SCI Format 1											
Payload	÷.,		0011	110	0 11	10 0	9011	1000	0000	,	
Priority	÷.,	4									
Resource Reservation	÷.,	1	1								
Frequency Resource Location		14									
Time Gap	÷										·
MCS Retransmission Index		3									1
Retransmission index	÷.,	1									1
Mac PDU Dissector is starting											1
SL-SCH MAC Header - V Field:			3	12	Dest	tinat	tion	TD 1	ength		
SL-SCH MAC Header - R Field:			0		DCSI		1011	10 1	-ing ci		
SL-SCH MAC Header - L2 Source			-	7868	,						100
SL-SCH MAC Header - 12 Destina				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						•	
4									Þ		
											1 2
Latencv evalu	12	tio	n	0	20	A	nt		f	nr.	

proper C-V2X verification

Rohde & Schwarz

Bit Error Rate (BER) reference measurements

C-V2X Scanner Message View

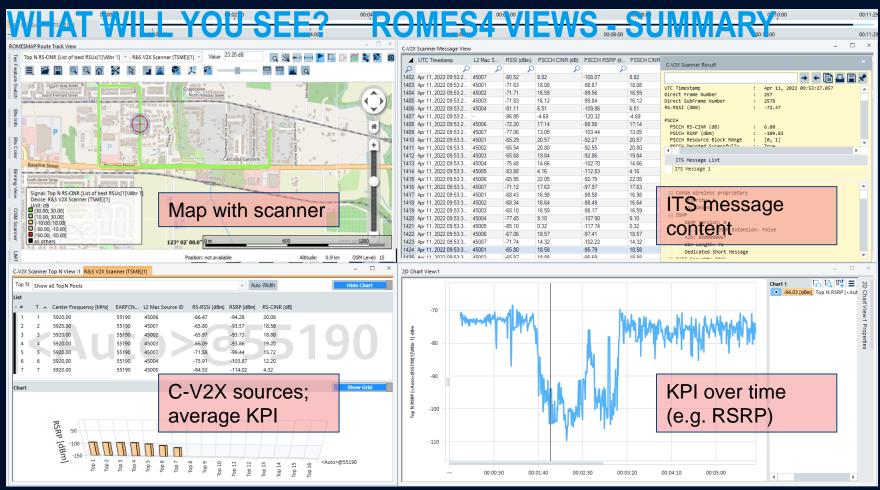

▲	UTC Timestamp	L2 Mac Source ID	RSSI (dBm)	PSSCH CINR (dB)	PSSCH RSRP (d	PSSCH BER (%)	
2	م ا	P	<u>م</u>	P	م ا	م م	
153	Okt 20, 2022 07:50:03.320	890570	-91.60	8.22	-118.36	4.65	
154	Okt 20, 2022 07:50:03.379	9379573	-77.56	24.13	-100.54	7.33	
155	Okt 20, 2022 07:50:03.383	9379573	-69.13	30.20	-91.01	9.13	
156	Okt 20, 2022 07:50:14.201	890570	-93.61	3.28	-122.99	14.28	
157	Okt 20, 2022 07:50:14.279	9379573	-73.77	26.91	-96.04	7.33	
158	Okt 20, 2022 07:50:14.283	9379573	-67.09	30.85	-88.95	9.13	
159	Okt 20, 2022 07:50:25.158	9379573	-75.02	25.84	-98.01	6.85	
160	Okt 20, 2022 07:50:25.172	9379573	-69.29	30.17	-91.58	9.13	
161	Okt 20, 2022 07:50:25.177	890570	-93.25	4.07	-121.92	10.65	
162	Okt 20, 2022 07:50:35.915	9379573	-66.48	31.47	-87.77	6.97	
163	Okt 20, 2022 07:50:35.923	9379573	-63.91	28.68	-89.82	9.25	
164	Okt 20, 2022 07:50:46.817	9379573	-68.25	32.26	-89.91	9.01	
165	Okt 20, 2022 07:50:46.865	890570	-93.57	3.89	-122.92	12.56	
166	Okt 20, 2022 07:50:46.908	16670963	-70.71	30.70	-92.25	7.21	
167	Okt 20, 2022 07:50:57.389	16670963	-73.21	28.98	-95.73	9.37	
168	Okt 20, 2022 07:50:57.446	890570	-93.76	2.58	-123.60	14.66	
169	Okt 20, 2022 07:50:57.481	16670963	-74.93	26.27	-98.10	6.73	
170	Okt 20, 2022 07:51:10.981	16670963	-83.87	17.96	-108.30	7.33	
171	Okt 20, 2022 07:51:10.989	16670963	-73.72	28.47	-95.82	9.13	
172	Okt 20, 2022 07:51:23.208	16670963	-68.37	31.54	-89.76	6.85	

- BER [%] per message = received bits with errors / total number of bits
- Bit errors can occur due to bad radio conditions such as low power level or signal to interference ratio

Monitoring the BER helps evaluating whether TCU can still decode the message

Rohde & Schwarz

Spectrum measurements – monitoring C-V2X spectrum

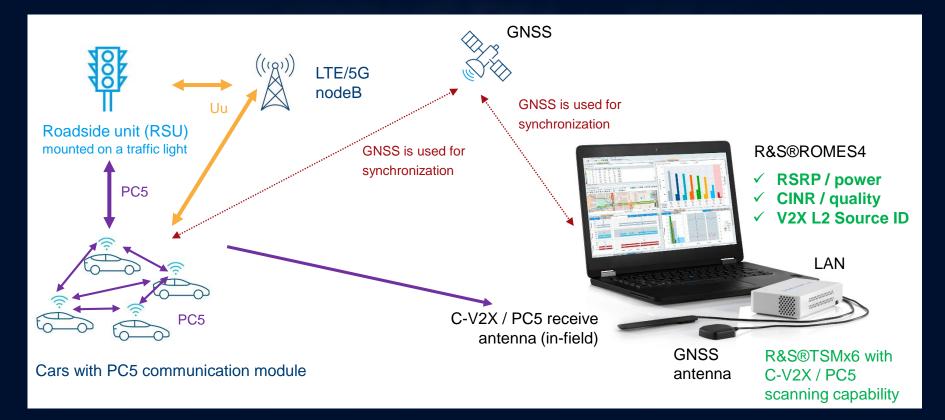


- Identification of interferers
- How busy is the C-V2X spectrum?

Real-time spectrum analysis
/ waterfall diagram beneficial

Qualitative status of load in the C-V2X system at the measurement location

Rohde & Schwarz


Rohde & Schwarz

CONTENT

- ► C-V2X: the "why" and the "what"
- ► C-V2X pain points
- ► A bit of technology
- ► Real field measurement results
- C-V2X Test Solutions
- Conclusion

C-V2X / PC5 scanner – field test scenario

Extensive R&S offerings for testing of C-V2X use cases From lab, R&D, production to field test

	3GPP RF	3GPP PROTOCOL	CAICT TESTING	TCU APPLICATION	E2E APPLICATION
Scalable	Allows customer to validate hardware using Rx and Tx measurements capability based on 3GPP 36.521-1	3GPP Protocol Test Cases leveraging CMW500 protocol testing features and test automation tools	CAICT ITS Conformance Test package from Neusoft for the China Market focused on Message,	Testing using CMW500 and Vector CANOE.Car2X system. Simulated environment allows real	Enables OEM to test complete Car, offering a quick transition from lab to proving ground, simulating
→ ∢ > ← Precise & Repeatable			Network and Application Security.	TCU software to be used with key interfaces (Ethernet, CAN) and protocols (AutoSAR etc.)	150+ Cars
Performance optimized	SMBV100B		Neusoft 5: 55		BBA150 VECTOR >
optimized	1.51				
E2E Application					
TCU Application					Ó
ITS Stack				0	0
3GPP Stack			0	0	0
3GPP PHY			<u> </u>	<u> </u>	<u>Ò</u>

Rohde & Schwarz

Safer roads by verifying critical C-V2X infrastructure and communication

Test Focus NS Required functionality

C-V2X should contribute to the global goal to reduce the number of road traffic deaths

C-V2X is more a governmental task than a clear financial business case. C-V2X ecosystem e.g. for road infrastructure is complex and country-/region-dependent.

ITS message decoding + RF reference measurements is a unique combination for C-V2X communication verification \rightarrow very important for RSUs, too!

Message latency + BER + spectrum measurements add more value to characterizing C-V2X communication \rightarrow very important for RSUs, too!

Network Scanners TSMx6 offer this unique combination for RSU site acceptance and as reference measurements what the TCUs can achieve

Rohde & Schwarz is your One-Stop-Shop for C-V2X lab, R&D, production tests and in-field performance verification

Rohde & Schwarz

Find out more

www.rohde-schwarz.com/v2x www.rohde-schwarz.com/mnt

ROHDE&SCHWARZ

Make ideas real

