Wi-Fi 7 is now! WHAT YOU NEED TO KNOW ABOUT GLOBAL REGULATORY COMPLIANCE

Feng Xie, Market Segment Manager

Jörg Köpp, Market Segment Manager

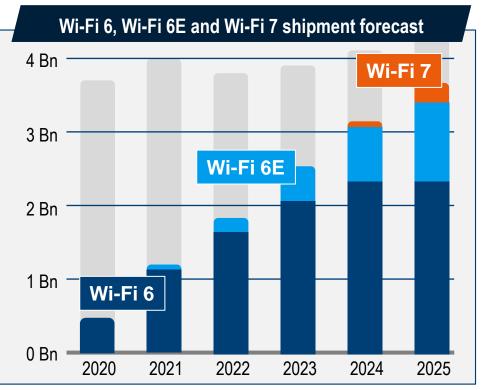
ROHDE&SCHWARZ

Make ideas real

What you need to know about global regulatory compliance

♦ Wi-Fi 7 is now!

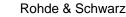
What does it mean for regulatory compliance?


What do we need to know about?

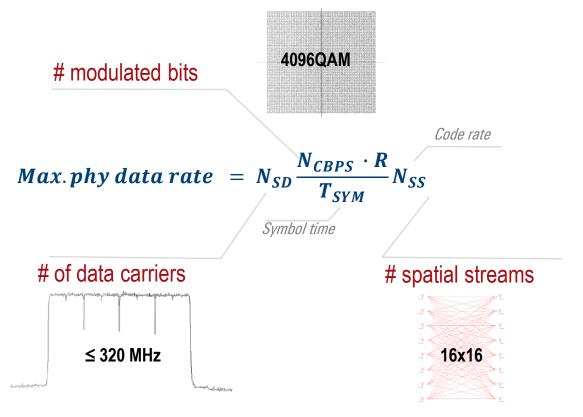
♦ What is next in Wi-Fi?

Wi-Fi 6 enters the market and Wi-Fi 7 will approach fast

- ◆ 19.5 Bn Wi-Fi devices in use (2023)
- ♦ 3.9 Bn Wi-Fi devices forecasted to ship
- 18% of all Wi-Fi 6 device shipments in 2023 support 6 GHz band operation

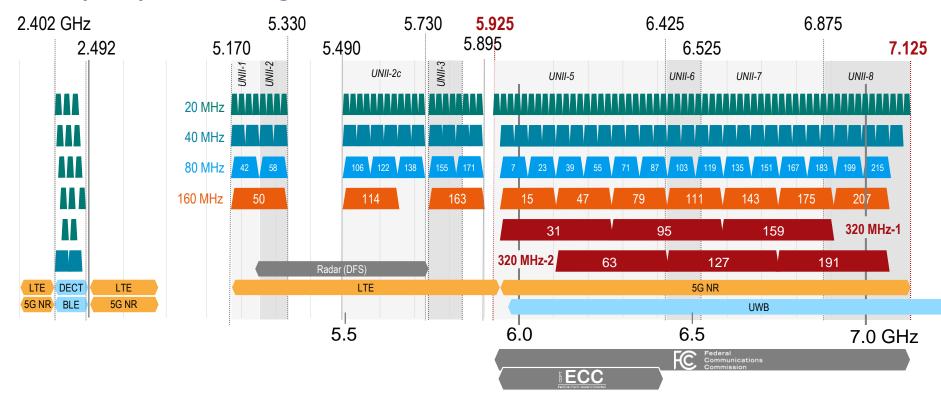


Source: IDC/ Wi-Fi alliance 2023

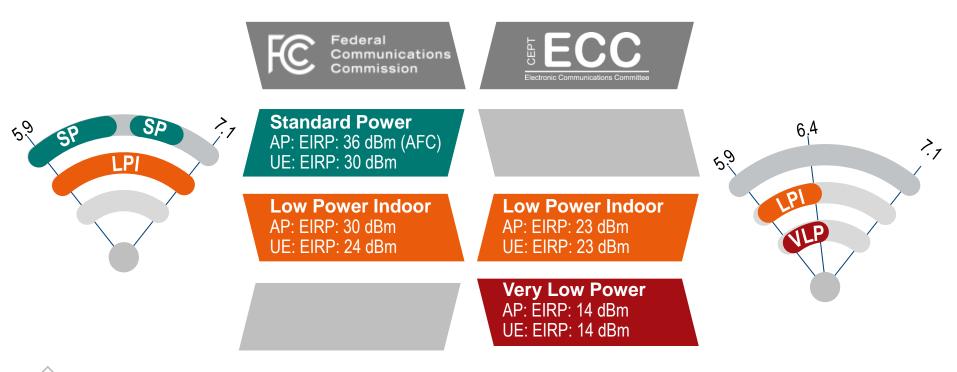


The 7th generation of Wi-Fi for Extreme High Throughput (EHT) at home, offices and factories

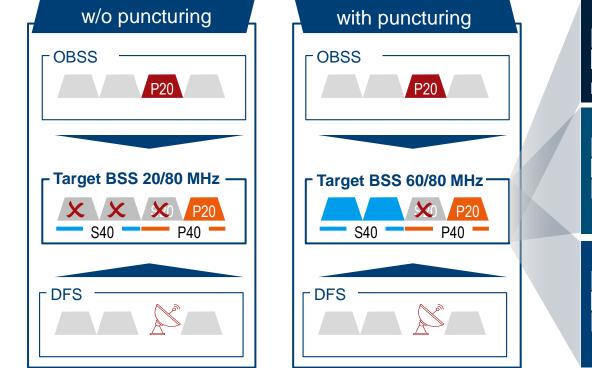
How to achieve extreme high throughput with Wi-Fi 7?



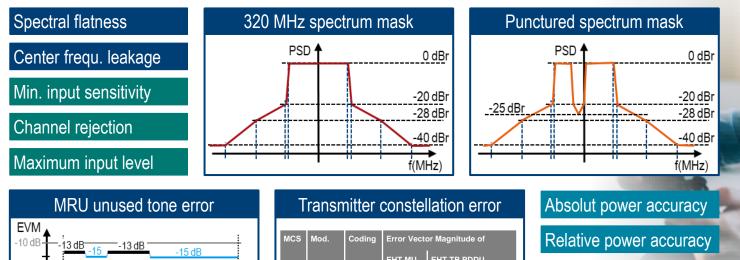
Over two generations a six-fold increase of max. throughput

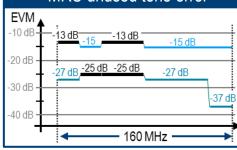

	Wi-Fi 5 (802.11ac)	Wi-Fi 6E (802.11ax)	Wi-Fi 7 (802.11be)
	Very High Throughput (VHT)	High Efficiency (HE)	Extreme High Throughput (EHT)
Supported bands	5 GHz	2 GHz, 5 GHz, 6 GHz	2 GHz, 5 GHz, 6 GHz
Channel bandwidth (MHz)	20, 40, 80, 80+80, 160	20, 40, 80, 80+80, 160	20, 40, 80, 160, 320
Transmission scheme	OFDM	OFDM, OFDMA	OFDM, OFDMA
Subcarrier spacing	312.5 kHz	78.125 kHz	78.125 kHz
Guard interval	0.4 µs, 0.8 µs	0.8 µs, 1.6 µs, 3.2 µs	0.8 µs, 1.6 µs, 3.2 µs
Spatial streams	8x8 (incl. DL-MU-MIMO)	8x8 (incl. MU-MIMO)	16x16 (incl. MU-MIMO)
Modulation (highest)	256QAM (8 bit)	1024QAM (10 bit)	4096QAM (12 bit)


New spectrum allocation allows more wide channels in a (still) less congested 6 GHz band


A common approach for 6 GHz band indoor operation with lower power, but ...

More and more countries allow or consider to allow the use of the 6 GHz band for licensed exempt use

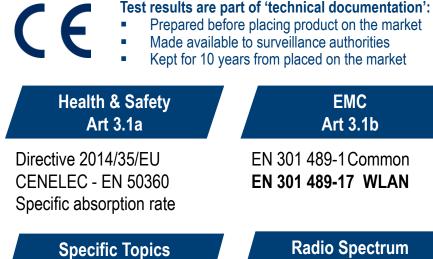



Use of wider channels (80/160/320 MHz) decrease the probability of experiencing interferences

802.11ax preamble puncturing						
80 MHz	20 MHz					
160 MHz	20 and/or 40 MHz					
HE MU PDDU	242					
802.11be (O	FDMA) pre. puncturing					
80 MHz	04 20 MHz					
160 MHz	within 80 MHz sub blocks					
320 MHz						
EHT MU/TB	242					
802.11be (non-OFDMA) pre. puncturing						
80 MHz	20 MHz					
160 MHz	20 or 40 MHz					
320 MHz	40 and/or 80 MHz					
EHT (MRU4)	484 242 969					

Receiver and transmitter requirement based on IEEE 802.11be

I ransmitter constellation error					
MCS	MCS Mod. Coding Error Vector Magnitude of				e of
			EHT MU EHT TB PDDU		DU
			PDD0	P > MCS7	P ≤ MCS7
12	4096-	3/4	-38 dB	-38 dB	- 38 dB
13	QAM	5/6	-38 dB	-38 dB	-38 dB


Absolut power accuracy Relative power accuracy RSSI meas. accuracy Carrier frequency offset

Timing drift

Conformance, compliance and acceptance Diverse test requirements for Wi-Fi STAs and APs

Standard	Wi-Fi	Wi-Fi mobile	Wi-Fi AP	Regulatory
conformance	interoperability	converged devices	operator acceptance	compliance
 Based on requirements defined in IEEE 802.11 like: Spectrum mask Spectral flatness Transmitter modulation accuracy (EVM) Receiver minimum input sensitivity 	Validate interoperability with other Wi-Fi CERTIFIED equipment operating in the same frequency band. Examples are Wi-Fi certified 6 (incl. 6E) or Wi-Fi EasyMesh	RF perform. evaluation of Wi-Fi mobile converged devices. The scope of testing includes handheld, self-contained Wi-Fi/ mobile modules, access point, notebook and tablet devices that support Wi-Fi as well as cellular technologies.	Test cases for RF performance, coverage, capacity & bandwidth, and stability / robustness.	 Based on national laws covering: Interference Efficient use of RF resource Coexistence ETSI EN 300 328, EN 301 893, EN 303 687 FCC 15.407 & FCC 15.247 FCC IS FCC ISING

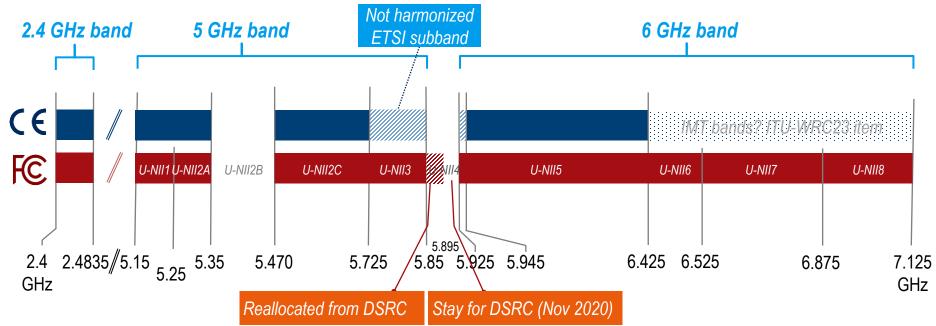
Wi-Fi device related regulatory test requirements for CE RED & FCC compliance

EN 301 489-17 WLAN

EMC

Art 3.1b

Art 3.3 Guideline 2019/320 (E112) Emergency service


Testing is performed by an FCC-recognized accredited testing laboratory.

47CFR §15.247/15.407

C63.10 American National Standard of **Procedures for Compliance Testing of Unlicensed Wireless Devices**

KDB 558074
KDB 789033/KDB 905462
KDB 987594

Unlicensed frequency bands landscape: e.g. ETSI & FCC Significant difference on details

U-NII: Unlicensed National Information Infrastructure DSRC: Dedicated Short-Range Communication

BS

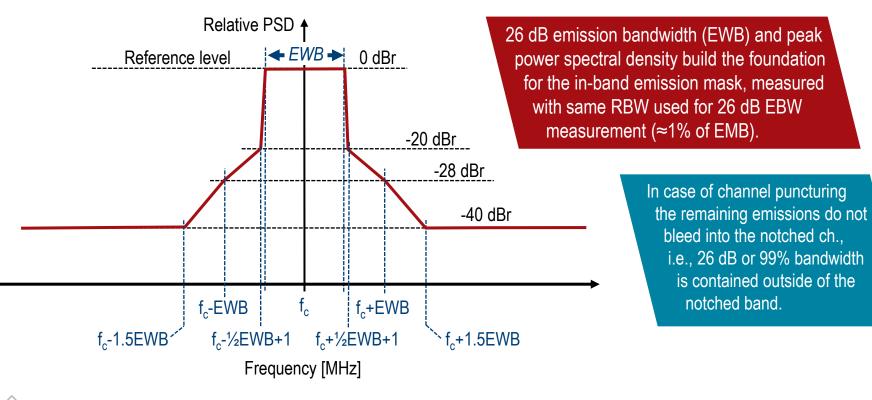
ETSI EN standards test cases for CE RED

	Test case	EN 300 328 2.4 GHz band	EN 301 893 5 GHz band	EN 303 687 6 GHz band
L	Carrier frequency accuracy		◆	♦
	RF output power	♦	♦	♦
litte	Transmit power control (TPC)		♦	
SM	Power spectral density	•	♦	•
Fransmitter	Occupied channel bandwidth	•	♦	•
H	Transmitter unwanted emissions	In out-of-band domain	Within 5 GHz bands	Within 6 GHz bands
		Spurious domain	Outside 5 GHz bands	Outside 6 GHz band
	Duty such TV seguence TV seg			
	Duty cycle, TX sequence, TX gap	•		
Coexistence	Dwell time, min. freq. occupation, hopping sequence (only for freq. hopping DUTs)	♦		
	Hopping frequency separation	◆		
	Medium utilization (MU) factor	◆		
	Adaptivity	♦	•	•
	Dynamic frequency selection (DFS)		◆	
Rec.	Receiver spurious emissions	♦	♦	•
	Receiver blocking	•	◆	•
	Receiver adjacent channel selectivity			•

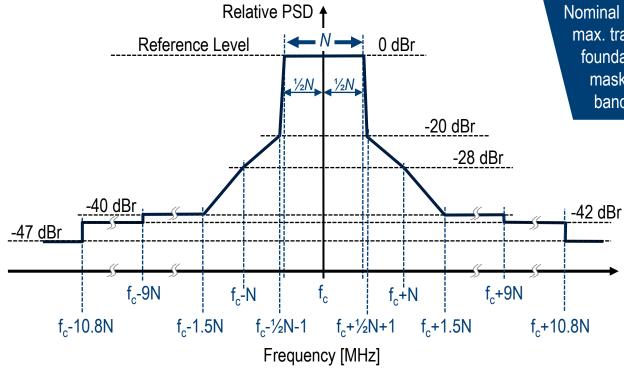
F

47CFR test cases for FCC

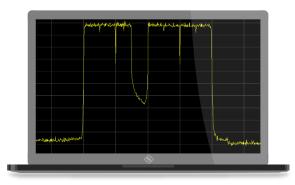
	Test case	47CFR §15.247 2.4 GHz* (KDB558074)	47CFR §15.407(/.247) 5 GHz (KDB 789033/905462)	47CFR §15.407 6 GHz (KDB 789033/987594)
	Peak output power	♦	♦	♦
	Max. conducted output power	•	•	♦
itte	Power spectral density	♦	•	♦
Transmitter	Emission bandwidth (6dB / 20dB / 26dB)	•	•	♦
	99% occupied bandwidth	♦	•	♦
	Spurious emission	♦	•	♦
	Frequency stability		•	♦
	Dynamic frequency coloction (DES)			
Coe	Dynamic frequency selection (DFS) Contention-based protocol (CBP)		•	•
	Dual client test			•



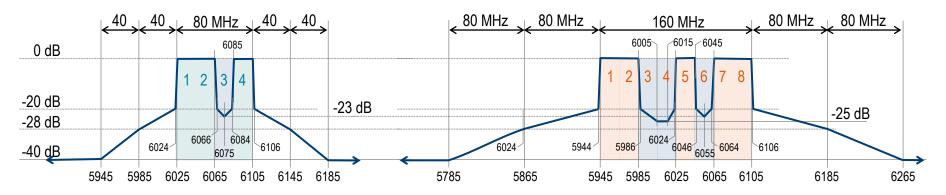
WASHINGTON, March 29, 2023 — FCC Chairwoman Jessica Rosenworcel today proposed that she and her colleagues establish high-level principles to guide the FCC's work on promoting efficient and effective use of advanced wireless technologies. ...**Improved receiver performance** can promote more efficient spectrum use and enable valuable new services to be introduced


In-Band Emission

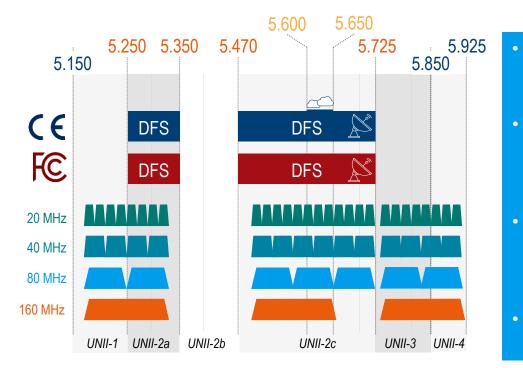
In-band emissions as defined in FCC KDB 987594 and FCC KDB 789033


Transmitter unwanted emissions within the transmitter's operating bands (EN 301 893/EN 303 687)

Nominal channel bandwidth *N* and the max. transmitted **PSD** build the foundation for transmit spectral power mask, measured with a resolution bandwidth of 1 MHz.


The mean PSD of the transmitter unwanted emissions within the transmitter's operating bands shall not exceed the limits of the mask or an **absolute level of** -30 dBm/MHz.

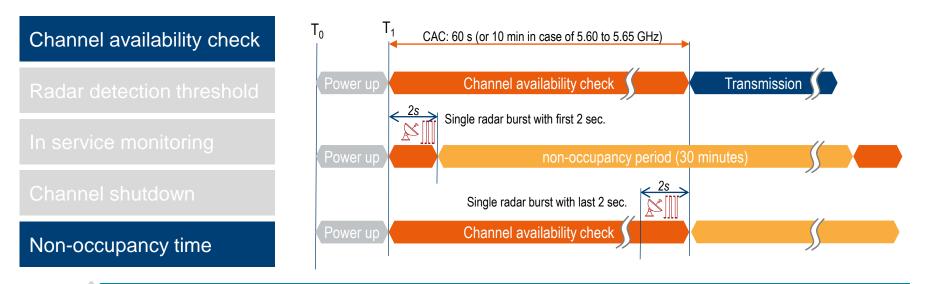
Transmitter unwanted emissions in case of multi-channel CE operation in adjacent or non-adjacent channels


In case of a multi-channel configuration (e.g. Wi-Fi preamble puncturing) on a group of adjacent channels where not all the adjacent channels are used for transmissions, the overall transmit spectral power mask is constructed from specific channel edge masks:

- When there is only one 20 MHz channel not used for transmission
- When there are two or more channels not used for transmission
- When the lowest channel(s) and/or the highest channel(s) are not used

Dynamic Frequency Selection

Dynamic Frequency Selection (DFS) grants priority to different radar applications operating in the 5 GHz band



- DFS is required for operation in UNII-2A (5250 MHz – 5350 MHz) and in UNII-2C (5470 MHz – 5725 MHz)
- EN 301 893 requires stricter limits (e.g. longer channel access check) to grant priority to weather radars in frequency range from 5600 MHz to 5650 MHz
- In FCC, the radar signal detection threshold is -64 dBm or -62 dBm dependent on EIRP and power spectral density.
- In EN 301 893, the threshold is a function of PSD, between -64 dBm and -62 dBm

CE RED: DFS test requirements are different for primary and secondary devices Primary device w/ radar detection Secondary device w/ radar detection Secondary device w/o radar detection Channel availability check Radar detection threshold In service monitoring Channel shutdown Non-occupancy time

Rohde & Schwarz

CE RED: DFS test item details and test challenges (1 of 3)

- All antenna ports of the DUT must be connected simultaneously.
- Test setup must manage time synchronization and RF calibration.
- A couple of hundreds waveforms must be selected randomly to cover seral combinations of radar signal and pulse types

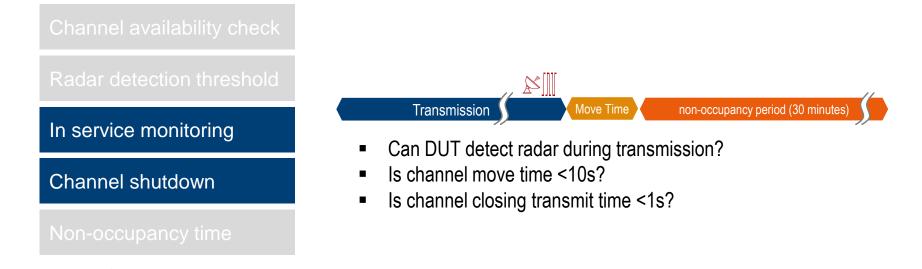
CE RED: DFS test item details and test challenges (2 of 3) CE

Radar detection threshold

In service monitoring

Channel shutdown

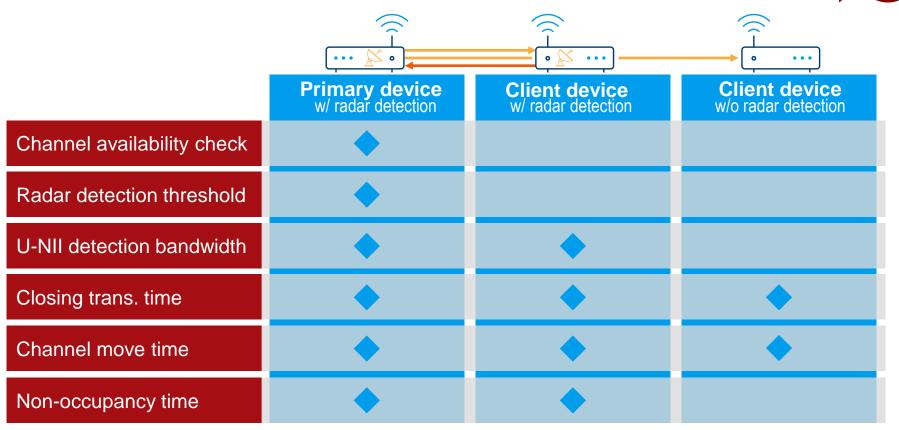
Non-occupancy time

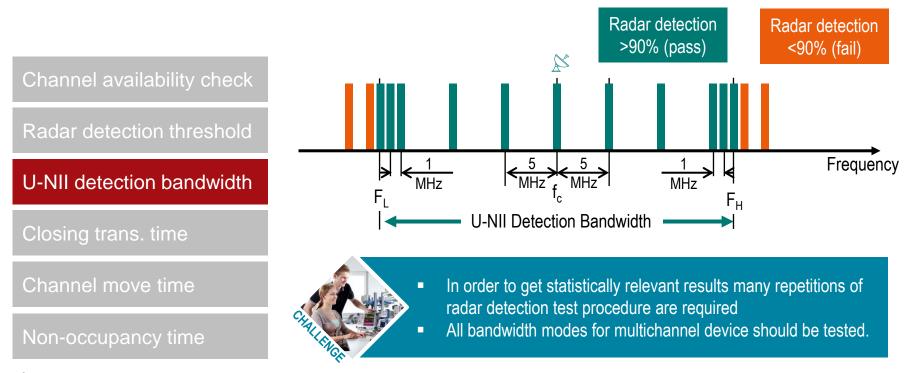



- Radar level = DFS detection threshold
- At least 12 detected in 20 repetitions
- At least **20** detected in 20 repetitions in case of 5.60 to 5.65 GHz

 As a function of DUT's transmitted power spectral density, the DFS detection threshold should be adapted during the test.

The required number of repetitions to get statistical relevant results and diverse channel/bandwidth combinations leads to long test time of several hours.

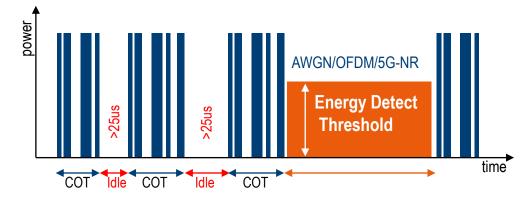

CE RED: DFS test item details and test challenges (3 of 3) CE


Requires extensive post processing of measurement data

FCC DFS test requirements are similar to RED

FCC: U-NII detection bandwidth test case is required

Check: U-NII Detection BW ≥ Occupied Channel BW (99% power)

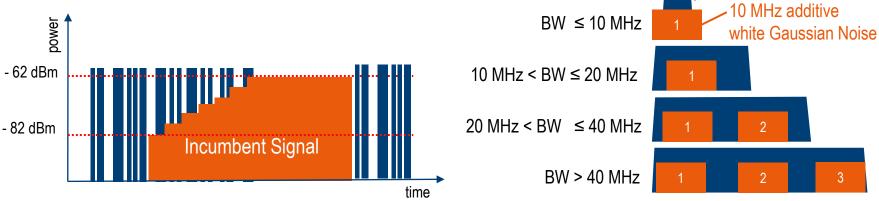


Listen Before Talk

RED adaptivity/channel access mechanism test LBT test is required for all 2.4 GHz, 5 GHz & 6 GHz devices

Listen Before Talk (LBT) based Channel Access Mechanism for channel clearance assessment procedure (example with EUT type: Load based, Initiating device, Surprising device)

- Is Channel Occupation Time (COT) below limit?
- Is duration of Idle period randomly distributed (cumulative histogram limit)?
- Does EUT stop transmission properly on this channel when other Energy is detected?
- Does Short Control Signalling Transmissions behave correctly?

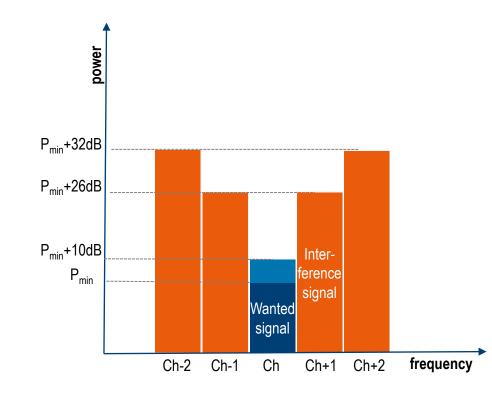

- Test procedure is complex and time consuming.
- High resolution (<1us) power measurement and long test time (>60s) generates huge test data.
- Post processing needs analyze >60,000,000 power measurements data get meaningful statistic results.

FCC contention-based protocol test for 6 GHz band

Listen before talk test for indoor access points and subordinate/clients

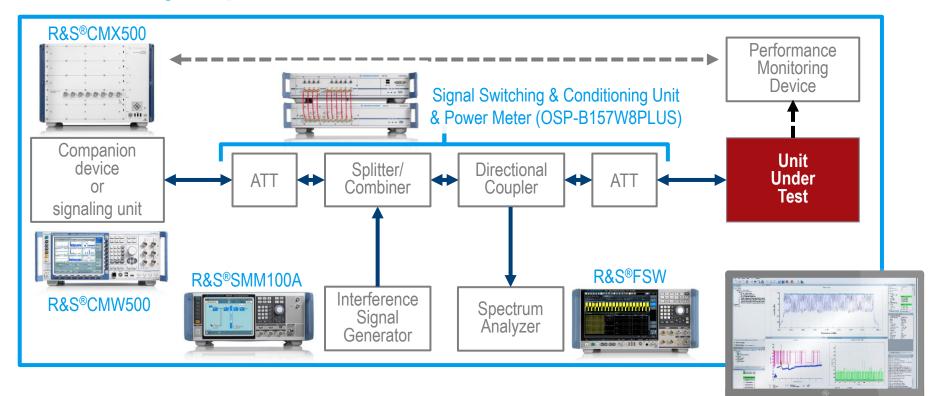
Expected DUT LBT behaver in time domain:

DUT should detect co-channel energy, with > 90% certainty.



DUT Bandwidth

- At least 10 repetitions for each channel & bandwidth is required due to 90% certainty.
- All bandwidth modes of the multichannel DUT should be tested.
- Precise power level threshold on DUT antenna ports needs calibration on test setup.

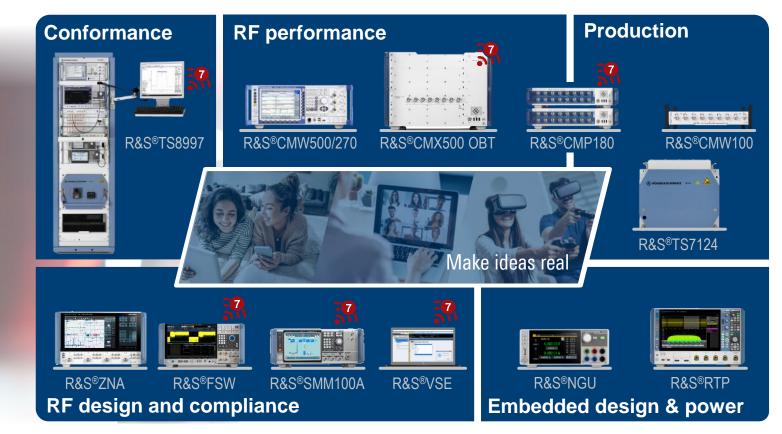

Receiver Adjacent Channel

RED Receiver Adjacent Channel Selectivity Test

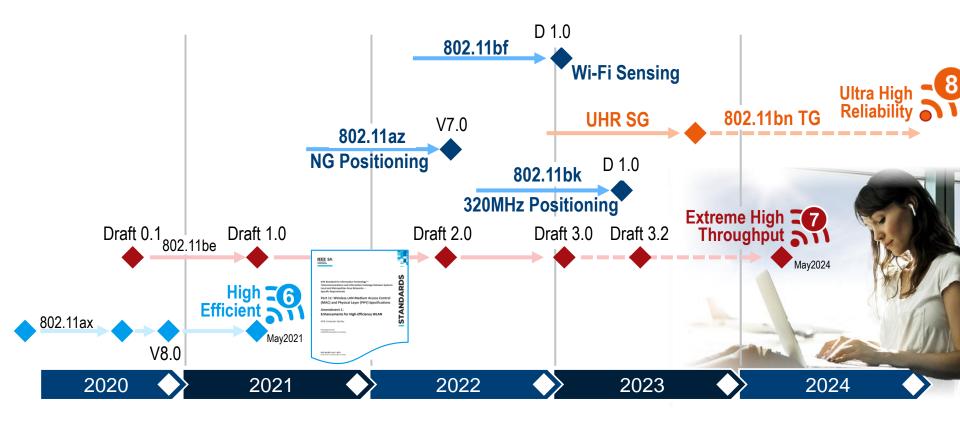
- 1. Adapt wanted signal power (<1dB step) to find a P_{min} on DUT antenna port, which leads to 10% PER.
- 2. Increase wanted signal power to (P_{min}+10dB) on DUT.
- 3. Add interference signal on adjacent channel 20MHz offsets (ch+1) with (P_{min}+26dB). DUT should maintain PER <10%
- 4. Add interference signal on adjacent channel 20MHz offsets (ch-1) with P_{min} +26dB. DUT should maintain PER <10%
- 5. Add interference signal on adjacent channel 20MHz offsets (ch+2) with P_{min} +32dB. DUT should maintain PER <10%
- Add interference signal on adjacent channel 20MHz offsets (ch-2) with P_{min}+32dB. DUT should maintain PER <10%

Wi-Fi DUT Receiver Test Setup From theory to practice

R&S[®] TS8997 turnkey regulatory test system


R&S®TS8997

- Supports latest CE RED and FCC test requirements for all Wi-Fi standards incl. Wi-Fi 6E/7
- Turnkey automated solution covers all complex test cases
- Follows measurement requirements details chasing high precision and granularity
- Supports all test methods according to standards, incl. normalized testing
- Long term maintenance service secure the stability and performance of test system



R&S[®]TS8996 supports all radiated spurious emission test items.

Wi-Fi test solutions for today and tomorrow

What else and what's next in Wi-Fi?

Rohde & Schwarz

The next generation of Wi-Fi targeting ultra high reliability

Enhancements for Ultra High Reliability:

- increasing throughput by 25%
- reducing latency by 25%
- reducing packet loss probability especially for seamless transition between BSS
 Reduce power consumption for APs and improved P2P

Amendment 802.11bn applies to carrier frequency operation between 1 GHz and 7.250 GHz and backward compatibility

Find out more www.rohde-schwarz.com/WLAN/11be

ROHDE&SCHWARZ

Make ideas real

