TIPS AND TRICKS FOR ACCURATE HIGH VOLTAGE MEASUREMENTS

Tom Neville Technology Management and Business Development

ROHDE&SCHWARZ

Make ideas real

OBJECTIVE

- Overview of voltage probes including pros and cons
- ► Key characteristics for selecting a high voltage differential probe for power applications
- ► Understanding the effects of cabling and connectors on power measurements

INTRODUCTION TO VOLTAGE PROBES

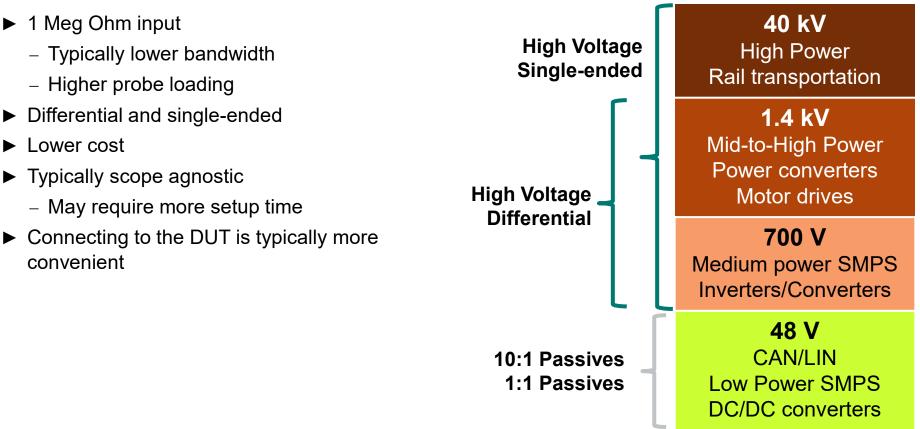
MEASURING VOLTAGE WITH ACTIVE PROBES

- ► Measurements
 - Gate drives, switchers, current sense, filters, and transformer
 - Applications such as inverters, converters, transportation, LED's, motor drives, and more
- \blacktriangleright Lower voltage applications have 50 Ω input
 - Typically higher bandwidth
 - Lower probe loading
- High voltage differential probes with native interface are 1 MO
- Differential and single-ended
- Typically higher cost
- Scope vendor specific
 - Minimal setup is required
- Rohde & Schwarz 4

Tips and Tricks for accurate high voltage measurements using differential probes

High Power Rail transportation 1.4 kV Mid-to-High Power Power converters Motor drives 700 V Medium power SMPS 48 V CAN/LIN

Low Power SMPS **DC/DC** converters


High Voltage Differential

6 kV

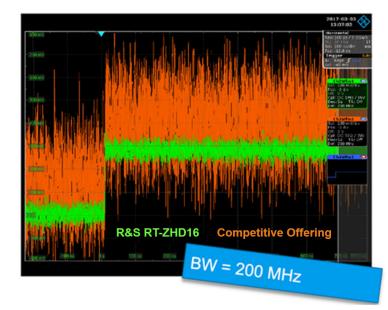
Inverters/Converters

Active single-ended Active differential

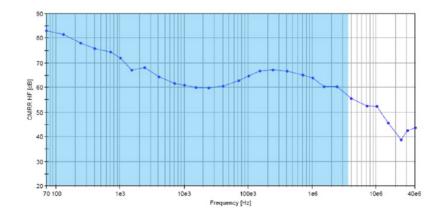
MEASURING VOLTAGE WITH PASSIVE PROBES

HIGH-VOLTAGE DIFFERENTIAL PROBES: RT-ZHD FAMILY

- One of two major T&M vendors that designs and manufactures their own high voltage differential probes
 - Not artificially peaked to get the performance
 - R&S is the only vendor to warrant their specifications using high voltage test signals
 - Other vendors use small signals and list the spec as typical
- ▶ Up to 200 MHz models and 6000 Vpeak
- ► Lowest **noise** in industry
- Up to 2000 V Offset Compensation
 - Independent of probe attenuation factor or vertical scale
- ► Excellent DC Accuracy: 0.5%
 - Integrated DC Voltmeter with 0.1% Accuracy
 - Very low drift
- ► High CMRR
- Overrange Indicator


SOURCES OF MEASUREMENT ERROR PEAKED STEP RESPONSE

- R&S tests and documents rise time using a 1 kV step response signal with 20 ns rise time
- ► Be cautious about how T&M vendor's specify rise time
 - Vendors will test and document the probe's rise time using a small signal (generally less than 20 V)
 - Why don't they use a fast, high voltage step?
 - Artificially peaking the front edge to get the rated performance
 - The "hump" at the front corner is an artifact of artificially increasing the gain to "boost" the performance.
 - The signal content of interest is at the front edge
 - Manipulating the front corner decreases accuracy


SOURCES OF MEASUREMENT ERROR PROBE NOISE

- Operate the probe within the right attenuation setting
 - Signals are attenuated and re-amplified
 - Noise is part of what gets amplified
- The lower noise of an RT-ZHD series probe against other competitor's probes is clearly seen in Figure 2.

SOURCES OF MEASUREMENT ERROR POOR COMMON MODE REJECTION (CMRR)

- CMRR specifies a probe's ability to reject common mode signals
- CMRR is frequency and dynamic range dependent
- It's critical to refer to the CMRR plot in the user's manual to understand how the probe's CMRR will affect your specific measurement

OFFSET COMPENSATION CHARACTERIZE SMALL VARIATIONS IN HIGH DC VOLTAGES

- Application
 - Ripple voltage detection on DC link
- Signal characteristics
 - 1000 V DC
 - ± 100 mV variations
 - High vertical measurement resolution required, e.g. 200 mV/div
- ▶ RT-ZHD: Differential offset up to 2000 V
- Most differential probes cannot compensate a DC offset

PROBES FOR MEASURING HIGH VOLTAGE LEVELS GENERAL PURPOSE HIGH VOLTAGE DIFFERENTIAL PROBES

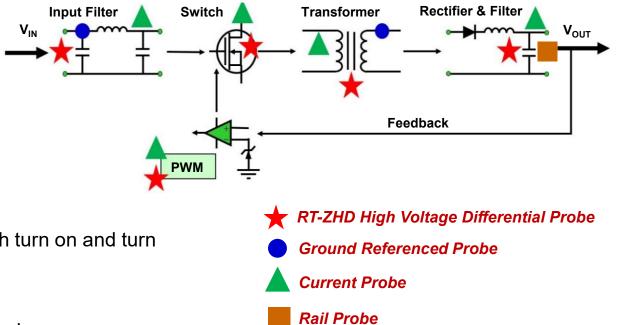
- ▶ 25 MHz and 100 MHz bandwidth
- 750 Vpeak and 1400 Vpeak input voltage
- BNC Interface
- BNC interface fits to all scopes / applications
- Cost-effective differential solution

PROBES FOR MEASURING HIGH VOLTAGE LEVELS SINGLE-ENDED PASSIVE PROBES

- ▶ 250 MHz and 400 MHz
- ► Single-ended passive probes
- ► Up to 1000 V (RMS) and 6000 V (peak)
- ► BNC Interface
- BNC interface fits to all scopes / applications
- Cost-effective solution

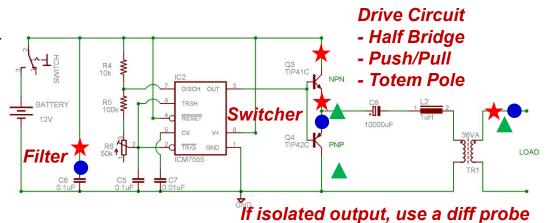
PROBES FOR MEASURING HIGH VOLTAGE LEVELS ISOLATED CHANNEL OSCILLOSCOPE – RTH FAMILY

- 60 MHz, 100 MHz, 200 MHz, 350 MHz and 500 MHz models
- Channel isolation for up to 1000 Vrms and 500 MHz bandwidth
- ► Isolated channels → no need for differential probes
- CAT IV 600 V, CAT III 1000 V with R&S®RT-ZI10 or R&S®RT-ZI11 probes
- ▶ High CMRR > 100 dB @ DC 100 kHz
- Up to 16-bit vertical resolution with high resolution mode



13 Rohde & Schwarz

APPLICATIONS

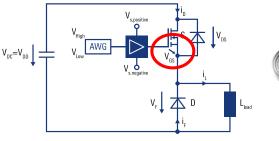

SMPS

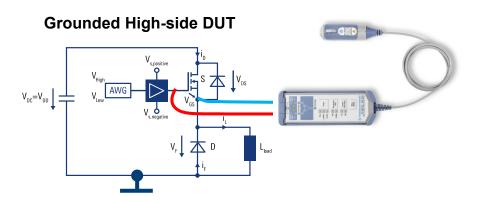
- Measurements
 - Switch
 - Switching Loss
 - Safe Operating Area
 - Output
 - Ripple
 - Input
 - Harmonics
 - Power quality
- Probe requirements
 - Fast rise time
 - Attenuation to evaluate both turn on and turn off
 - Low noise
 - Sufficient CMRR
 - Offset adjustment and control
 - RTH may be used in lieu of a differential probe where applicable

INVERTER

- Industry trends
 - Higher power ratings. Inverter cost per watt decreases as inverter power increases.
 - Higher system voltages in order to reduce power losses and cost
 - Higher efficiencies
- Probe needs
 - Sufficient CMRR over bandwidth
 - Low noise
 - No artificial peaking to get probe performance
 - Measure your probe with a fast, high voltage step

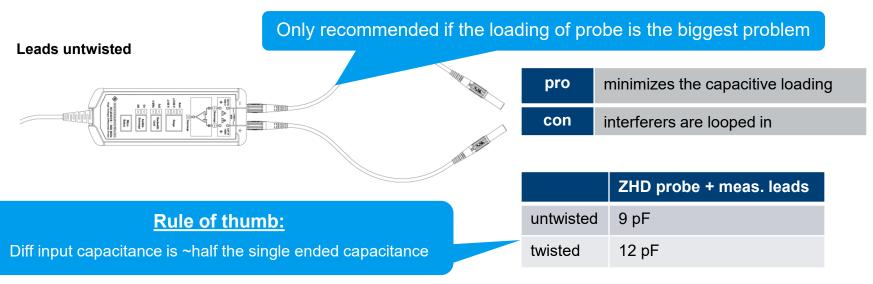
- RT-ZHD High Voltage Differential Probe
- Ground Referenced Probe




DOUBLE PULSE TEST VOLTAGE PROBING

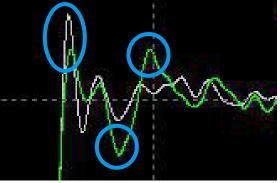
- Passive probes are sufficient for floating setups
 - Possible for device characterization setups
 - Care has to be taken on any (unintentional) grounding
- Broadband differential probes are an attractive alternative for floating setups
 - Very high bandwidth of up to 1 or 2 GHz
 - Very low loading (~ 1pF)
 - Input voltage range of +/-50V DC with 10:1 attenuator
- High-voltage differential probes are necessary if system-under-test is grounded
 - Typically the case for prototypes
 - Provide CMRR to suppress switch-node signal

Floating High-side DUT



EFFECTS OF CABLES AND CONNECTORS ON HIGH VOLTAGE DIFFERENTIAL PROBES

TWISTED OR UNTWISTED CABLES

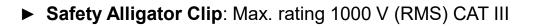


19 Rohde & Schwarz

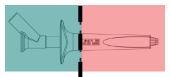
TWISTED OR UNTWISTED CABLES 200 MHZ BANDWIDTH

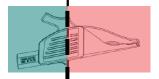
VS VS

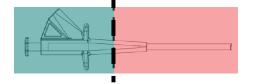
The impulse response of the probe is optimized with twisted test leads

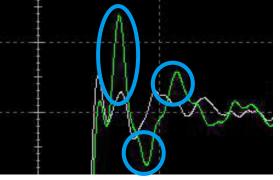

Higher overshoot due to twisting

Untwisted:


high lower frequency ringing


INFLUENCE OF CLIPS


► Test Clip: Max. rating 1000 V (RMS) CAT IV


▶ Pincer Clip: Max. rating 1000 V (RMS) CAT III

21 Rohde & Schwarz

ALLIGATOR VS PINCER CLIPS 200 MHZ BANDWIDTH

Clips have an influence on accuracy especially at full bandwidth (e.g. 200 MHz)

Find out more

www.rohde-schwarz.com

Thank you!

ROHDE&SCHWARZ

Make ideas real

