Webinar

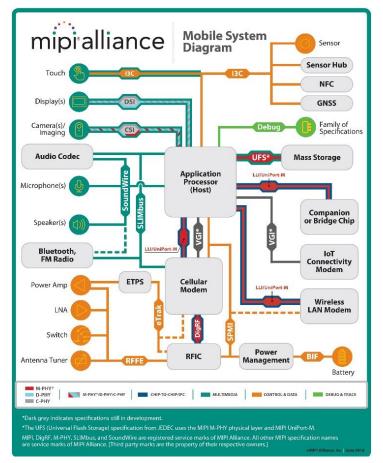
MIPI D-PHY 2.1/2.5 COMPLIANCE TESTING WITH RTP OSCILLOSCOPE

Guido Schulze, Product Manager, Oscilloscopes Alessandro Cappelletti, Application Expert, Oscilloscopes

ROHDE&SCHWARZ

Make ideas real

OUTLINE

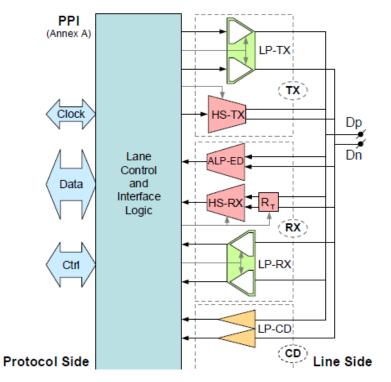

- ► MIPI D-PHY Insights
- ► Compliance Testing
- ▶ Live Demonstration
- ► Summary

MIPI D-PHY INSIGHTS

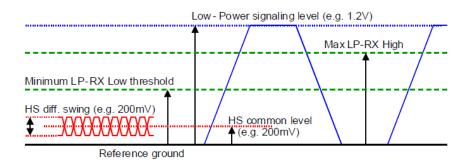
WHAT IS MIPI D-PHY

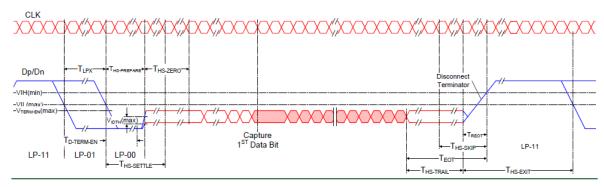
- Physical layer defined by MIPI Alliance
- Especially for mobile applications
- Primarily for camera and display
- ▶ Highspeed data interface
- ► Expands to other industries

MARKET TRENDS


- ► Mobile/ Consumer:
 - Continued display & camera innovation on smartphones
- ► Automotive:
 - Lidar, Radar, etc. for autonomous drive
- ▶ Industrial:
 - Higher resolution

MIPI D-PHY SIGNALS



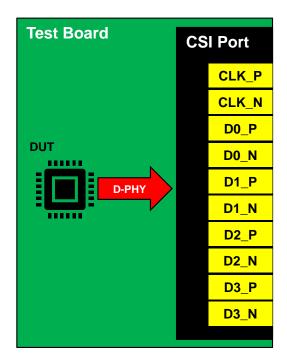

- ➤ Source-Synchronous: one or more data lanes (uni- or bidirectional) and 1 clock (master to slave)
- High-speed signalling for fast data traffic (differential signalling)
 - 80 to 1500 Mbps per lane without deskew calibration.
 - Up to 2500 Mbps per lane with deskew calibration.
 - Up to 4500 Mbps per lane with equalization.
- ► Low-Power signalling for control purposes (single-ended) or low speed communication (differential)

MIPI D-PHY SIGNALS

- ► High-speed mode:
 - LVDS
- Low-Power mode:
 - 2x single-ended
- ► Alternate Low-Power (ALP) mode:
 - low voltage levels of HS
 - unterminated

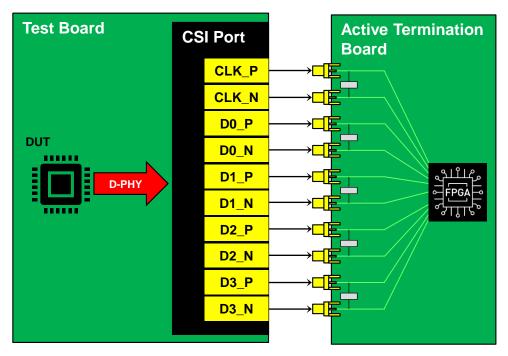
SPECIFICATIONS BEHIND

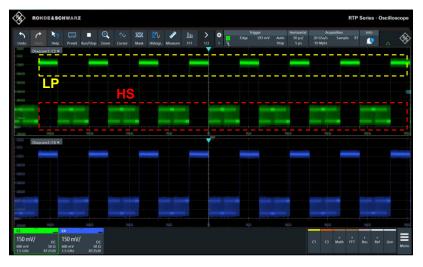
Specification	Date	Diff	Specification Status	Test Materials
D-PHY ^{sм} v3.0	21-Jul-2021	Diff	Recommended	_
D-PHY SM v2.5	17-Oct-2019	Diff	Superseded	_
D-PHY SM v2.1	28-Mar-2017	Diff	Superseded	стѕ
D-PHY SM v2.0	08-Mar-2016	Diff	Superseded	_
D-PHYSM v1.2	10-Sep-2014	Diff	Superseded	стѕ
D-PHYSM v1.1	16-Dec-2011	Diff	Superseded	стѕ
D-PHY sM v1.0	22-Sep-2009	_	Superseded	CTS


EVOLUTION OF THE STANDARD

Category	Feature	v1.0	v1.1	v1.2	v2.0	v2.1	v2.5	v3.0
	Board Adoption	4Q 09	4Q 11	3Q 14	1Q 16	1Q 17	3Q 19	3Q 21
Symbol Rate	Standard Channel	1	1.5	2.5	4.5	4.5	4.5	9
(Gbps/Lane)	Short Channel					6.5	6.5	11
	Basic De-emphasis				✓	✓	✓	✓
Increased	Calibration			✓	✓	✓	✓	✓
Symbol Rate	Additional UI Jitter (RCLK jitter) specs		✓	✓	✓	✓	✓	✓
	Rx Equalization							✓
Power Reduction	Unterminated Mode				✓	✓	✓	✓
Power Reduction	Reduced Amplitude "LVLP" Mode option					✓	✓	✓
LP Mode	Alternate Low-Power Mode						✓	✓
	16-bit/32-bit PPI				✓	✓	✓	✓
	Optical Interconnect				✓	✓	✓	✓
Enhanced	HS Reverse Mode	✓	✓	✓	✓	✓	✓	✓
Function	PHY Generated/Detected Packet Delimiter					✓	✓	✓
	Fast Lane Turnaround						✓	✓
	4m channel support, for IoT use cases				✓	✓	✓	✓
Protocol Specs	MIPI CSI-2®			v1.2/ v1.3		v2.0	v3.0	v4.0
	MIPI DSI-2 ^{5M}	-	-	v1.1/ v1.0	v2.0	-	-	-

Source: MIPI DevCon Sep. 2022

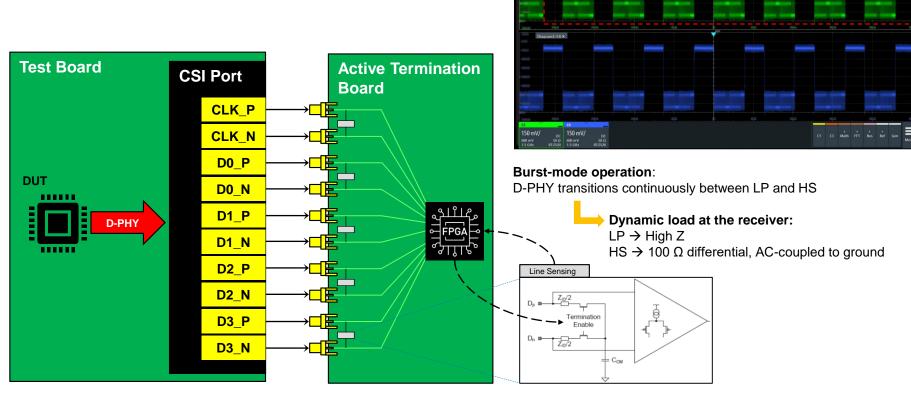

COMPLIANCE TESTING

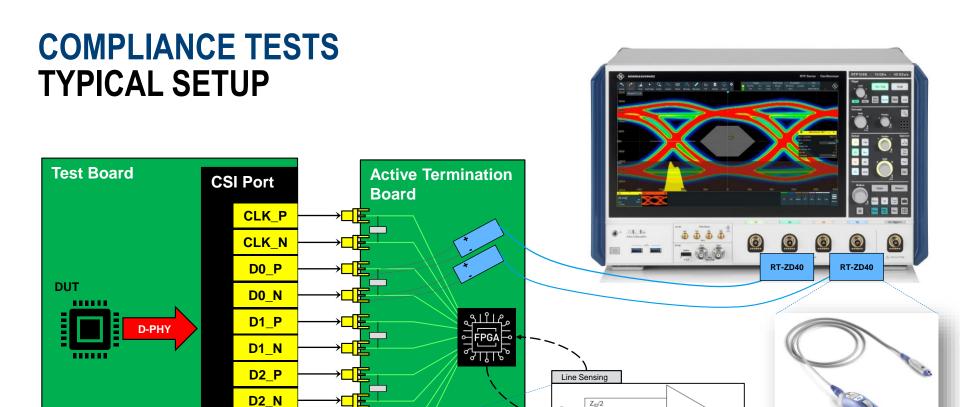

COMPLIANCE TESTS TYPICAL SETUP

1 Clock Lane Up to 4 Data Lanes

COMPLIANCE TESTS TYPICAL SETUP

Burst-mode operation:


D-PHY transitions continuously between LP and HS


Dynamic load at the receiver:

LP → High Z

HS \rightarrow 100 Ω differential, AC-coupled to ground

COMPLIANCE TESTS TYPICAL SETUP

D3_P D3_N

COMPLIANCE TESTS TEST CASES

- ► CTS v2.1 describes 6 test groups
 - Group 1 (1.1.x) verifies various requirements specific to Data Lane LP-TX signaling.
 - Group 2 (1.2.x) verifies various requirements specific to Clock Lane LP-TX signaling.
 - Group 3 (1.3.x) verifies various requirements specific to Data Lane HS-TX signaling.
 - Group 4 (1.4.x) verifies various requirements specific to Clock Lane HS-TX signaling.
 - Group 5 (1.5.x) verifies various requirements specific to HS-TX Clock-to-Data-Lane timing.
 - Group 6 (1.6.x) verifies various requirements specific to Initialization, ULPS, and BTA behavior.

MIPI D-PHY Compliance Testing

COMPLIANCE TESTS TEST CASES

- ► Example of Group 3 test cases:
 - timing and voltage tests

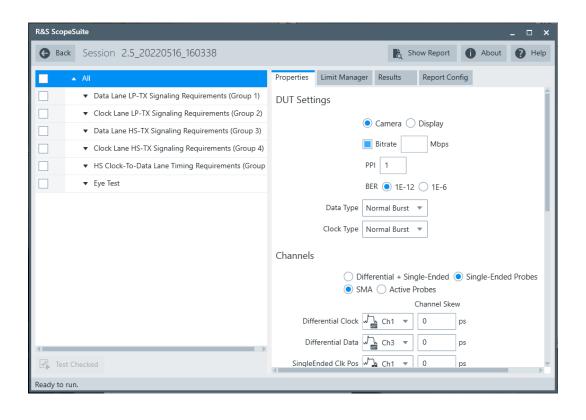
Ш	▲ Data Lane HS-TX Signaling Requirements (Group 3)
	Data Lane HS Entry: T_LPX Value (1.3.1)
	Data Lane HS Entry: T_HS-PREPARE Value (1.3.2)
	Data Lane HS Entry: T_HS-PREPARE + T_HS-ZERO Value (1.3.3)
	Data Lane HS-TX Differential Voltages V_OD(0) and V_OD(1) (1.3.4)
	Data Lane HS-TX Differential Voltages Mismatches d_V_OD (1.3.5)
	Data Lane HS-TX Single-Ended Output High Voltages V_OHHS(DP) and V_OHHS(DN) (1.3.6)
	Data Lane HS-TX Static Common-Mode Voltages V_CMTX(1) and V_CMTX(0) (1.3.7)
	Data Lane HS-TX Static Common-Mode Voltages Mismatch d_V_CMTX(1,0) (1.3.8)
	Data Lane HS-TX Dynamic Common-Level Variations Between 50-450 MHz d_V_CMTX(LF) (1.3.9)
	Data Lane HS-TX Dynamic Common-Level Variations Above 450 MHz d_V_CMTX(HF) (1.3.10)
	Data Lane HS-TX 20%-80% Rise Time tR (1.3.11)
	Data Lane HS-TX 80%-20% Fall Time tF (1.3.12)
	Data Lane HS Exit: T_HS-TRAIL Value (1.3.13)
	Data Lane HS Exit: 30%-85% Post-EoT Rise Time (1.3.14)
	Data Lane HS Exit: T_EOT Value (1.3.15)
	Data Lane HS Exit: T_HS-EXIT Value (1.3.16)

ROHDE & SCHWARZ TEST SOLUTION

MIPI D-PHY COMPLIANCE

▶ Options:

- RTP-K26: V.1.2

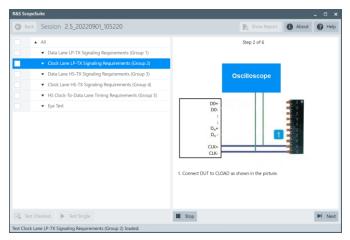

- RTP-K27: V.2.1/2.5

▶ Functions:

- Guided Tx compliance tests
- Data & Clock lane test for LP and HS mode
- Detailed Report

► Advantages:

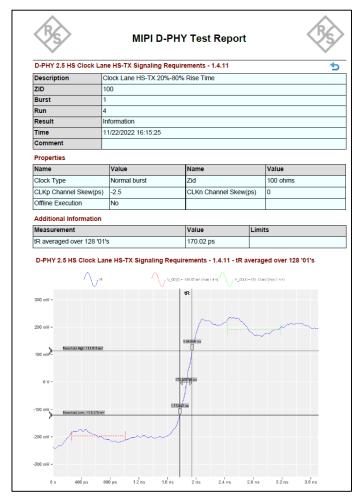
- Support of latest standard
- Support of Eye Test



MIPI D-PHY Compliance Testing

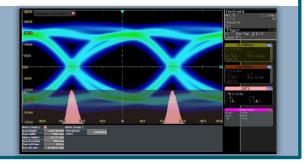
R&S TEST SOLUTION GUIDED STEPS

► The R&S ScopeSuite guides the user with supporting illustrations step-by-step



R&S TEST SOLUTION DETAILED REPORT

► Configurable Report in selectable format

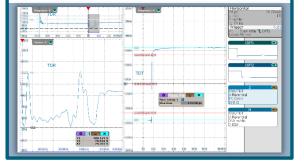


SIGNAL INTEGRITY DEBUGGING

R&S RTP OSCILLOSCOPE: Unique Analysis Functions

Fastest Eye Diagram Analysis

- CDR based triggering
- Real-time deembedding
- Real-time differential math
- Real-time analysis (histogram, mask)


Most detailed Jitter & Noise Decomposition

- Histograms for all components
- Track and Spectrum views
- Eye diagram, BER bathtub
- Step/Frequency response

Most versatile TDR/TDT Analysis

- 16 GHz differential Pulse Source
- TDR / TDT Analysis SW
- Guided calibration & measurement
- PacketMicro Probe

R&S TEST SOLUTIONS ADDITIONAL MIPI OPTIONS

▶ Compliance

RTP-K28: MIPI C-PHY

► Triggering and Decoding

- RTO/P-K40: MIPI RFFE
- RTO/P-K42: MIPI D-PHY based DSI and CSI-2
- RTO/P-K44: MIPI M-PHY physical layer and UniPro protocol layer

LIVE DEMONSTRATION

SUMMARY

TYPICAL CONFIGURATION: MIPI D-PHY REV 2.1/2.5

#	Туре	Description			
1x	RTP134	13 GHz High-performance oscilloscope			
2x	RT-ZM130	13 GHz Modular probe (HS mode)			
2x	RT-ZMA10	Solder-in probe tips			
2x	RT-ZD40	4.5 GHz differential probe (LS mode)			
1x	RTP-K27	MIPI D-PHY 2.1/2.5 compliance test option			
1x	RTP-K136	8 Gbps Advanced Eye analysis option (for Clock delta UI, Clock Jitter)			
1x	RTP-K140	8 Gbps Serial Pattern Trigger (for Clock and Data Eye)			
Optional – Signal Integrity Debugging					
1x	RTP-SIBNDL	Signal Integrity Bundle (incl. Deemb., 16 Gbps serial pattern trigger w/ HW-CDR, etc.)			
1x	RTP-K134	Jitter & Noise decomposition option			
Test Fixtures					
1x	UNH-IOL-DPHY-RTB	Active Termination Board (order from https://license.unh.edu/products/iol/mipitestfixtures)			
1x	CLOAD	MIPI D-PHY Capacitive Load Fixture			

SUMMARY

- ► MIPI D-PHY is highspeed interface for displays, cameras, etc.
- ► Emerging applications in automotive, industrial, etc.
- R&S test solutions:
 - Automated compliance test
 - Signal integrity debugging
 - Triggering and decoding
- ► R&S RTP oscilloscope most flexible & compact test solution

Find out more www.rohde-schwarz.com

Thank you!

ROHDE&SCHWARZ

Make ideas real

