VERSATILE 5G FR2 OVER-THE-AIR ANTENNA CHARACTERIZATION AT YOUR BENCHTOP

Prof. Fabien Ferrero, University Côte d'Azur, Sophia Antipolis / Nice Günter Pfeifer, Rohde & Schwarz Product Management Munich

ROHDE&SCHWARZ

Make ideas real

VERSATILE 5G FR2 ANTENNA MEASUREMENTS

- ► Agenda:
 - Sophisticated antenna design
 - How to measure conveniently
 - Solution offerings from R&S

PRESENTERS

- 25 years of experience in radio com
- 5G FR2 OTA and CATR focused
- Product manager

- Professor for Electronics
- 20 years experience in RF
- Antenna enthusiast
- Researcher

FR2 MEASUREMENT: WHAT IS THE PROBLEM ?

- ► Measurement at millimeter wave is more challenging
- Integrated mmW Antenna with Front end -> no access to antenna port
- Active Antenna design include development of complex firmware
- ► FR2 Antenna are more directive and usually include beamsteering
- ► To fully characterize 5G FR2 system, CW measurement is not sufficient -> EVM

WE NEED A CHANGE IN ANTENNA DESIGN PROCESS

Passive mmW project

Active mmW project

WE NEED A CHANGE IN ANTENNA DESIGN PROCESS

Antenna optimization in anechoic chamber :

- Costly (very)
- Not practical for prototype
- Full3D spherical scanner
- Im quiet zone

In-house simple Bench top system:

- Very Cheap
- Open environment
- Near-field issue
- No rotational stage

WE NEED A CHANGE IN ANTENNA DESIGN PROCESS

Antenna optimization in anechoic chamber :

- Costly (very)
- Not practical for prototype
- Full3D spherical scanner
- Im quiet zone

Bench top system:

- Cheaper
- Open environment
- Far-field direct measurement
- Rotational stage

OUTLINE

- ► EEMW4FIX project : Motivation and Context
- Beam-switched Lens Antenna principle
- Measurement using AT800B
- Conclusion & Perspectives

SOLVING THE DIGITAL DIVIDE

- More than one billion homes worldwide still find themselves without a regular broadband connection [1].
- Fixed Wireless Access (FWA) is can provide a broadband service to homes, business and factories, when there is no infrastructure to deliver wired broadband via copper, fiber or hybrid solutions.
- Next-generation FWA such as beam-switching at millimeter waves (mmW), will deliver robust, reliable and cost-efficient solutions on a massive scale.

THE 5TH GENERATION OF TELECOMMUNICATIONS

- Operators are utilizing small cells to **fill the gaps** with traditional macro network.
- The backhaul in a small cell environment has significantly different deployment characteristics compared to macro backhaul networks.
- Small cell backhaul is constrained by cost, size and location to a far greater extent than traditional macro networks.

ENERGY EFFICIENT MMW FOR FIX PROJECT

- Started in November 2021
- ► 5 partners
- Funded by ANR

BEAM-SWITCHED LENS ANTENNA

[2] Imbert, Marc & Papió, Anna & De Flaviis, Franco & Jofre, Lluis & Romeu, Jordi. (2014).
 Switched-beam antenna array for 60 GHz WPAN applications. 10.1109/APS.2014.6905162.

BEAM-SWITCHED LENS ANTENNA

ENERGY EFFICIENCY

	Classical mmW	EEMW4FIX solution	EEMW4FIX solution
	Phased Array	1 RF Path	4 RF Paths
Dimensions	5*5*5 cm	10*10*~10 cm	10*10*~10 cm
Antenna elements	64	64	64
Tx EIRP	54 dBm	48 dBm	48 dBm per path
Rx gain	23 dB	29 dB	29 dB
Total Tx + Rx	77 dB	77 dB	77 dB
Activated antenna elements	64	4	16
RF Power consumption	10W	0.6W	2.4W
Scanning angle	+/-60°	+/- 15	+/- 15°
Number of beams	1	1	4

BEAM-SWITCH LENS ANTENNA

THALES

TOWARDS COMPACT LENS ANTENNA

- ► Example of a sub-wavelength dielectric lens antenna @ 42GHz [3-4]
 - ϵ_{R} = 2.6 and $tan\delta$ = 7.10 $^{-3}$
 - Thousands of pillars

THALES

HOW TO MANUFACTURE ?

THALES

TOWARDS COMPACT LENS ANTENNA

* Q-band

Artificial material + 3D printing

- = <u>Functional</u> RF parts with better performance
 - > Gain improvement up to 1.5 dB
 - Thickness reduction by 4 (13mm vs. 53mm)
 - > Weight reduction by 3 (160g vs. 445g)
 - > Cost reduction by 10 (100€ vs. 1000€)

BEAM-SWITCH LENS ANTENNA

Rohde & Schwarz

PRELIMINARY EXPERIMENTAL RESULT

- 100dB Channel Isolation
- Integrated Signal-Processing & Control Module
- StableTemperature
 - Regulation
- Wireless Signal Control

API Application USB

mm-Wave

Correlator

Scope

Spectrum

[VNA]

VNA Trig Input

VNA Trig Output

User

Probe-Array

Controller GPIO Lines

64-Channel **Antenna-Array** with mmWave Correlator

Interferometric

Beamforming

Patterning

3D-Lens

Dual-Beam

Correlations

Antenna

Array

Lens System

BEAM SELECTION MATRIX

RF/mmWave

Correlator

Smart-FPGA

Controller

BEAM FORMER FRONT-END

- 26 30 GHz operational frequency band
- Supports 4 dual-pol radiating elements
- Tx/Rx half duplex operation
- Tx output power: o +12 dBm @ 3% EVM o +20 dBm @ P1dB
- 20 dB Tx gain
- 25 dB Rx coherent gain for 8 channels
- 3.4 dB Rx coherent NF
- -25 dBm Rx coherent IIP3 (adjustable)
- 6-bit phase control (LSB=5.6 deg)
- 5-bit gain control (LSB=0.5 dB)
- Fast beam steering Telemetry reporting
- 5mm x 4.5 mm WLCSP Single 1.8V supply operation
- 22nm FDSOI process

BEAM-SWITCH LENS ANTENNA

PHASED ARRAY DESIGN

- Dipole printed antenna fed by microstrip line
- 28GHz with more than 3GHz bandwidth with -10dB S₁₁ criteria
- ▶ 0.25mm thick Rogers 4350B substrate
- ► Wide aperture radiation pattern
- Compatible with dual-polarized assembly

PHASED ARRAY DESIGN

- ► Up to 8*8 array for 3D beamsteering
- Array assembly with dummy elements
- ► Only single polarization as a start
- 0.5 lambda element distance between element for fine beam steering

MEASUREMENTS

RX MODE

- The two ports of the reflector source are connected to VNA port 1 et 2
- The AUT cable is connected to receiver B

TX MODE

- The two ports of the reflector source are connected to receiver R2 and B
- The AUT cable is connected to Port 1

MEASUREMENT RESULT

CONCLUSION & PERSPECTIVE

- ► Versatile solution to conduct prototype measurement and optimization
- ► Integration of various instruments and equipment is facilitated
- ► In the next steps, measurement of Active parameters : EVM, TRP, TIS

14:03:23 28.09.2021

REFERENCES

- [1] "5G For FWA (Fixed Wireless Access): 2017-2030 Opportunities, Challenges, Strategies & Forecasts," Market Insight report, SNS TELECOM, 2017.
- [2] Imbert, Marc & Papió, Anna & De Flaviis, Franco & Jofre, Lluis & Romeu, Jordi. (2014).
 Switched-beam antenna array for 60 GHz WPAN applications. 10.1109/APS.2014.6905162.
- [3] A. O. Diallo, B. Loiseaux et al., "Comparison Between a Thin Lens Antenna Made of Structured Dielectric Material and Conventional Lens Antennas, in Q-Band in a Compact Volume," IEEE Antennas and Wireless Propagation Letters, vol.17, no.2, pp. 307-310, Feb. 2018.
- [4] R. Czarny and al, "Q-Band High Gain radome integrated lens antenna for compact backhaul terminal," European Conference on Antennas and Propagation, Mar. 2017.

PYTHON LIBRARY

- <u>https://github.com/FabienFerrero/PyAMS</u>
- <u>https://github.com/rohde-schwarz/OTA-Toolbox</u>
- Comprehensive control of rotational stage, instruments and DUT on a single platform
- Generic and open source framework

WHICH CATR PRODUCTS DO WE OFFER (SO FAR)?

► R&S[®]ATS800B

► R&S[®]ATS800R

► R&S[®]ATS1800C

OTA Test Solution

R&S FR2 OTA IFF CATR SOLUTIONS OVERVIEW

	ATS800B	ATS800R	ATS1800C	ATS1800M
Dim. (WxHxD)	1.2 x 0.8 x 0.6	0.6 x 2.0 x 1.2	0.9 x 2.0 x 1.5	~3.5 x 2.0 x 1.5
Application	Benchtop R&D, academia, research institutes	R&D, pre-conformance (RF, LBS, Netop, PCT, PQA)	R&D, conformance & pre-conformance (RF, LBS, Netop, PCT, PQA)	R&D, conformance & pre-conformance RRM multiple AoA
Туре	Black box CATR	Black box CATR	Black box CATR	Black box CATR
Freq. Range	20 - 50 GHz	20 - 50 GHz	(6) 23 - 90 GHz	(6) 23 - 90 GHz
Supported freq. Range	Full range	Full range	Full range (feed switcher)	Full range (multiple feeds)
Quiet zone	Ø 20 cm	Ø 20 cm	Ø 30 cm	4x Ø 30cm
Positioner	2D positioner (opt.)	3D Az over El (opt.)	3D Az over El	3D Az over El
Shielding Eff.	N/A	>60dB	>90 dB	>70dB
Extreme Temp.	N/A	1D	3D	3D

Find out more www.rohde-schwarz.com/products/OTA

Make ideas real