車用雷達測試面面觀

Frank Shen Senior Application Engineer

ROHDE&SCHWARZ

Make ideas real

OUTLINE

► ADAS Technology

- ► FMCW Theory
- Test Challenges
- ► Test and Measurement Solutions

LEVELS OF DRIVING AUTOMATION (SAE J3016[™])

RADAR BASED AUTONOMOUS DRIVING THE SITUATION

AUTOMOTIVE RADAR FREQUENCY MAP 76-81 GHZ GLOBALLY AVAILABLE

RADAR TECHNOLOGY TRENDS TYPICAL SENSOR PARAMETERS

Radar Module Parameters	Short-Range Radar	Standard Mid- Range Radar	Premium Mid- Range Radar	Standard Long- Range Radar	Premium Long- Range Radar
Frequency Range [GHz]	24,76-77,77-81	76-77	77-81	76-77	76-77
Typical Bandwidth [MHz]	200, 1000, 4000	1000	2000	500	1000
Range [m]	80	150	150	250	300
Range Resolution [cm]	300, 30, 3.5	30	7.5	75	30
FOV Azimuth / Elevation [°]	±60 / ±0	±30 / ±0	±50 / ±15	±15 / ±5	±15 / ±10
Typical Channel Number [Transmit / Receive]	3 TX / 4 RX	4 TX / 8 RX	8 TX / 12 RX	4 TX / 8 RX	12 TX / 16 RX

RADAR TECHNOLOGY TRENDS NEW MODULATION SCHEMES FOR BETTER INTERFERER ROBUSTNESS

Modulation Technique	Today: FMCW	Near Future: PMCW	Long term: OFDM
Waveform	f f f f f f f f f f f f f f f f f f f	θ t ~0.5 ns	
Waveform Duration	~10 µs	~1 µs	~1 µs
ADC Sample Rate	~50 MSample/s IQ	>1 GSample/s IQ	>1 GSample/s IQ
Interferer Robustness	Good	High	High
Massive MIMO	Multi-Phase, Chirp Coded	Phase Coded	Orthogonal Sub-Carrier

OUTLINE

- ADAS Technology
- ► FMCW Theory
- ► Test Challenges
- ► Test and Measurement Solutions

R&S Solutions for Automotive Radar FMCW RADAR – RANGE MEASUREMENT

10

FMCW RADAR – RANGE RESOLUTION

R&S Solutions for Automotive Radar FMCW RADAR – ANGULAR MEASUREMENT

- *d* Physical distance between antennas
- $\Delta \varphi$ Phase difference
- α Angle of arrival
- λ wavelength

$$\alpha = \sin^{-1}\left(\frac{\lambda \cdot \Delta \varphi}{2\pi d}\right)$$

Estimate azimuth / elevation angles from phase differences / amplitudes at the receive antennas of the phased array

FMCW RADAR – MIMO FOR ANGULAR RESOLUTION

- Requirement: Angular resolution
 Phase difference φ from antenna to antenna (Object is far away – plane wave approach)
- Angular resolution with 8 Rx antennas
- MIMO approach with 4 Rx and 2 Tx Tx1 is seperated by 4d from Tx2 Wave emanating from Tx2 traverses an additional path of length 4dsin(θ) compared to Tx1
 → 6 antennas vs. 9

1) http://www.ti.com/lit/an/swra554a/swra554a.pdf

RADAR TECHNOLOGY TRENDS CAR CONFIGURATIONS 2022

OUTLINE

- ► ADAS Technology
- ► FMCW Theory
- ► Test Challenges
- ► Test and Measurement Solutions

TEST IMPLICATIONS OF TECHNOLOGY DEVELOPMENTS

- New frequency bands, modulation schemes, higher bandwidths and complex modulation schemes and MIMO
- L3 and beyond systems requires Virtual Integration and Vehicle-inthe-Loop validation
- Advanced tests during R&D of automotive radar sensors and testing of ADAS features require multiple dynamic artificial objects
- ► These artificial objects must be dynamic in terms of:
 - Distance
 - Size (Radar Cross Section RCS)
 - Radial velocity (Doppler frequency shift)
 - Angular direction
- Higher levels of autonomous driving require multiple radar sensors in a single vehicle which have to be stimulated simultaneously

Compact and efficient automotive radar testing

RADAR OBJECT SIMULATION CHALLENGES

Limitation of current laboratory test options

- OTA sensor stimulation required
- Limited scenario testing capabilities
- Azimuthal moving targets challenging to simulate

Reproducible and standardized testing

- Millions of test kilometers on test track
- Increased ADAS capabilities

Complex and time critical driving tests

- Limited test capability on public roads
- A roadworthy prototype is required

→ Historically bulky, expensive & inflexible test systems

Compact and efficient automotive radar testing

OUTLINE

- ► ADAS Technology
- ► FMCW Theory
- ► Test Challenges
- Test and Measurement Solutions

RADAR TARGET SIMULATION MOST SCALABLE AND VERSATILE SOLUTION IN THE MARKET

Rohde & Schwarz 2024/2/6 Test and Measurement Solutions for Automotive Radar

R&S[®]QAT100 FRONTENDS VERSIONS

R&S[®]QAT100 with QAT-B11 (SIMO) frontend

- ▶ 96 transmit & 5 receive antennas
- Optional second independent TRX line
- Simulation of up to 8 echoes from different directions

R&S®QAT100 with QAT-B21 (MIMO) frontend

- ▶ 96 transmit / receive antenna pairs
- Optimized for MIMO technology
- ► Simulation of up to 4 echoes from different directions

R&S[®]QAT100 QAT-B11 / -B2 ANTENNA NUMBERING

TeraTX circuit

TeraRX circuit

Antenna numbering drivers

Compact and efficient automotive radar testing

R&S[®]QAT100 QAT-B21 ANTENNA NUMBERING

Segment A	Segment B	Segment C Segment D	
			TX19 TX20 TX21 TX22 TX23 TX24
RX1 RX2 RX3 RX4 RX5 RX6	RX7 RX8 RX9 RX10 RX11 RX12	RX13 RX14 R154 RX16 RX17 RX18	RX19 RX20 RX21 RX22 RX23 RX24

TeraTX circuit

TeraRX circuit

Antenna numbering drivers

Rohde & Schwarz

Compact and efficient automotive radar testing

QAT100 ADVANCED ANTENNA ARRAY QAT-Z50 SHIELDING SYSTEM

QAT-Z50 shielding system

- 50 cm long, 10° opening
- Direct mounting kit for QAT

Challenges

- Car mounting kit respectively
 QAT stand in front of car
- Customization based on e.g.
 CAD required

ANGULAR RESOLUTION & FIELD-OF-VIEW

Distance (d)	Field-of-view (α)	resolution ($\Delta \alpha$)
500 mm	38,7°	0,42°
700 mm	28,1°	0,30°
1000 mm	19,9°	0,21°
1500 mm	13,34°	0,14°
2100 mm	10,0°	0,10°

$$\Delta \alpha = \tan^{-1} \left(\frac{3,7mm}{d} \right) \qquad \qquad \alpha = 2 \cdot \tan^{-1} \left(\frac{351mm}{2 \cdot d} \right)$$

25 Rohde & Schwarz 06.02.2024 R&S AREG800A - Advanced Automotive Radar Echo Generation

R&S Solutions for Automotive Radar HARDWARE-IN-THE-LOOP – BEFORE

https://youtu.be/t0noOLYGPDw COMPANY RESTRICTED

HARDWARE-IN-THE-LOOP VALIDATION COLLABORATION WITH VECTOR

Closed-loop radar module validation using realistic road scenarios or artificial test cases

Open Simulation Interface (OSI) ensures future-proof and smooth software integration

Vector CANoe for rest-bus simulation via CAN or Ethernet connectivity in real-time

CAN signals from restbus simulation

R&S Solutions for Automotive Radar HARDWARE-IN-THE-LOOP – DEMONSTRATION VECTOR

RADAR SIGNAL ANALYSIS SPECTRUM ANALYZERS AND OSCILLOSCOPES

- ► Spectrum Analyzers for high sensitivity measurements
 - Signal analysis for up to 90 GHz frequency and 8.3 GHz bandwidth
 - Measuring chirp frequency linearity, length, long-term stability and power in order to improve accuracy and fulfill regulatory requirements
 - Measuring chirp phase noise to increase sensitivity

FSW85 Spectrum Analyzer

30

RADAR SIGNAL ANALYSIS CHIRP SIGNAL ANALYSIS WITH R&S SOFTWARE

Analyze the Full spectrogram of the signal in waterfall view.

Analyze the chirp in an intuitive time-frequency plot.

Check the frequency deviation of the chirp at each time instant.

A table summarizing all important chirp specifications.

COMPANY RESTRICTED

Rohde & Schwarz 2024/2/6 Test and Measurement Solutions for Automotive Radar

RADAR MEASUREMENT PRINCIPLE

QAR50 TECHNICAL SUPERIORITY ...

Ensures radar compatibility and correct positioning.

Spatially resolved transmission phase (*)

Precise reflection

Precise Transmission loss

Ensures radar compatibility.

Enables homogeneity checks.

Both polarization Available with horizontal and vertical polarization.

Traceable Tx loss and reflection Results traceable to (inter)national standards.

000000	
000000	

High resolution reflection image (*) Enables enhanced homogeneity analysis.

Reflection frequency response (*) Helps identifying thickness and other mismatches.

Transmission loss frequency response (*) Ensures radar compatibility.

(*) optional items

32 Rohde & Schwarz Apr 2021 QAR50 - Radome Tester for production environments

VEHICLE-IN-THE-LOOP TESTING

R&S Solutions for Automotive Radar VEHICLE-IN-THE-LOOP DEMONSTRATION

THANK YOU FOR YOUR ATTENTION

COMPANY RESTRICTED

R. 19. 19
