

电动、智能、网联系统HiL及通信一致性测试

Based On CANoe and vTESTstudio Open Platform

Let's Assume the Future Topology Looks Like This

Simple

Sensor

Actuator

How does HiL cover Automotive Trends?

HIL Test Systems

- What are the characteristics of a powerful test system?
 - ► Type of PCs, processor?
 - Automotive network channels?
 - Number of electrical I/O channels?
 - Sampling rates?
 - Capability of simulated loads?

- Each test system has a specific test objective
- Power of a test system refers always to the assigned objective

Power of a Test System = Ability to achieve the test objective completely, reliably and reproducibly

How does HiL cover Automotive Trends?

4

CANoe for XIL

How does HiL cover Automotive Trends?

VT System for HIL

Stimulation Modules analog VT2004A digital VT2516A

Network

Interfaces

Rotation Sensor Module VT7820 Smart Charging Module VT7970 / VT7971

Network Interface Modules VT6104B / VT6204B VT2710 / VT6306B

General Purpose Modules current VT2808 analog VT2816A digital VT2848 Relais VT2820 Matrix VT2832

Multi VT5838

Load + Measurement Modules VT1004A (40V) VT1104 (60V)

Real-Time Modules Atom VT6020 Core i7 VT6060

XiL Testing Design - vTESTstudio

Virtual Test Drives- DYNA4

Vehicle under Test

- realistic vehicle dynamics
- internal vehicle states sensors
- driving tasks for virtual driver
- actuation of throttle, brakes, steering, switches, etc.

- road network with surface properties and lane markings
- traffic signs and signals
- terrain, buildings, vegetation

Virtual Test Driving

Dynamic Environment

- lighting, fog, precipitation
- vehicles, pedestrians, animals
- deterministic traffic tasks
- reaction to scenario events
- enrich with stochastic traffic

Environment Perception

- camera, radar, lidar, ultrasonic
- object lists, target lists, physicsbased sensor raw data or ground-truth data (OSI)
- affected by vehicle dynamics for realistic sensor movements

Agenda

1. How does HiL cover Automotive Trends?
--

3. Network Conformance lest HIL	3.		Network Conformance Test HIL	
---------------------------------	----	--	------------------------------	--

4.

Simple Sensor and Actuator

Infrastructure

Complex Sensor and Actuator - 1

Complex Sensor and Actuator - 2

- μController or μProcessor
- Various OS
- Prop. middleware
- Raw data; services

Complex Sensor and Actuator - 3

- Complex Sensors Actuator Radar, Lidar Camera Headlight
- μController or μProcessor
- Various OS
- Prop. middleware
- Raw data; services

Control - 1

Control

- µController

VVECTOR

Control - 2

- µController
- AUTOSAR OS
- AUTOSAR Classic
- Signal comm.
- CANoe based solution
- VT System for BMU I/Os
- Specialized cell simulator HW Battery cell simulation model runs on CANoe RT in robust 1ms timing
- Example: 108 cells in 480µs on Vector RT IPC
- ► Full use of vTESTstudio

Powertrain Battery Chassis

Control - 4

MCU HiL

- µController

Control

- AUTOSAR OS
- AUTOSAR Classic
- Signal comm.

Control - 5

- µController
- AUTOSAR OS
- AUTOSAR Classic
- Signal comm.
- Simulation of high voltage and power components
 - ▶ AC grid, HV battery, LV battery
- ► Fault injection:
 - ► AC grid disturbance simulation
 - Short circuit of HV and LV battery
- High speed synchronized data acquisition with RBS
 - AC DC voltage, current and power
 - ► Harmonic analysis
 - Power factor
 - Pulse and overshot measurement

Zonal

- Hypervisor, POSIX-OS
- AUTOSAR
- Signal/service comm.

HPC - Generic

HPC IVI ADAS Generic

- $\mu Processor$ or SoC
- Hypervisor, POSIX-OS
- AUTOSAR, ...
- Service comm.

VVECTOR

. .

- y

HPC – ADAS-1

HPC – ADAS-2

- > ECU outputs frame trigger signal
- > frames sent on trigger

HPC - IVI

- µProcessor or SoC
- Hypervisor, POSIX-OS
- AUTOSAR, ...
- Service comm.

Backend

- IT frameworks
- Services, µServices, libs
- Vehicle connector

VVECTOR

Backend – V2X

DV/PV Testing

设备类别	通信接口	远程控制功能	
	以太网		
	CAN	- 设定温度/湿度、读取温度/湿度设定值、读取温度/ -湿度实际值_设定温变速态_设定温箱运行/停止	
	模拟量	以及读取故障信息;	
	RS 232/485		
	以太网	设定输出申压/申流、读取申压/申流、设定设备开	
直流电源	RS 232/485	关、设定输出限值,调用设备中已保存的波形,	
	模拟量	及读取故障信息;	
HVAC电源	以太网	设定输出电压/电流/频率、读取电压/电流/频率/功 率因数、设定设备开关、设定输出限值,调用设备 中已保存的程序,以及读取故障信息;	
HVAC负载	以太网	设备运行/关断、模式选择(恒流,恒压,恒功率 等)、设定电流/电压/功率值、读取电流/电压/功率 值/功率因数、保护限值设定和故障信息反馈;	
功率计	以太网	读取电压、电流、有功功率、无功功率、效率、功 率因数、频率、谐波;	
粉页无分	CAN	」 实现量程设定、电压读取功能、实现传感器类型设	
	以太网	置、温度读取等功能 ;	
水冷系统	以太网	设定流量、温度、进出水口压力、压差,读取流量、温度、进出水口压力、压差设定值,读取流量、	
	RS 232/485	温度、进出水口压力、压差实际值,读取故障信 息;	
电感负载	RS 232/485	读取每项温度,读取设备反馈故障信息;	
	USB	远程操作示波器波形时间轴调节、纵轴调节、	
	以太网	_∠OOM功能、STOP功能、数据保存、波形图方份 	

Agenda

1. How does HiL cover Automotive Trends?
--

HiL Solutions for future testing

k Conformance Test HIL

4.	
----	--

Conformance Tests for CAN/CAN FD/CAN XL

Conformance Testing

- Physical Layer
 - Bus output voltage/Bit Time
 - Rising and Falling edges time
 - Capacity and Resistance characteristics
 - Bus failure behavior
- Data Link Layer
 - ▶ ID/DLC According to [CMX]
 - Extended Data Frames check
 - Remote Frames check
- Interaction Layer
 - Cyclic Transmission
 - Fast Cycle of Periodic and If Active Messages
- Network Management
 - OSEK NM
 - AUTOSAR NM/PN
 - Others(e.g. NM High)
- Electrical testing
 - Over/Under voltage

Ground shift tolerance

Diagnostic Testing

- Protocol Testing
 - Diagnostic Message Flow
 - > Addressing and timing
 - Diagnostic Protocol Format
 - > Valid, Combined and Invalid Requests
 - > Response (single, none, multiple)
 - Data Type Checks
 - Sessions and Security Levels
 - > Session and security state transitions

Software Download testing

- > Valid Flashing
- Cancel data transfer (stop transmission or clamp reset)
- Application testing
 - Diagnostic Parameters
 - > Passive parameter validation
 - Active control of I/Os to validate diagnostic parameter content
 - Fault Memory
 - Provoke network signal failures
 - > Provoke hardware failures using the I/Os
 - > Any other failures using user scripts

Example: CAN/CAN FD/CAN XL Conformance Test Bench

E

Conformance Tests for Automotive Ethernet

ISO/OSI Layer

Automotive Protocols	Application	SOME/IP ETS SOME/IP Server
TCP/IP Protocol	Transport	TCP DHCPv4 UDP
Family	Network	IPv4 ICMPv4 ddress Resolution
Automotive	Data Link	Address Learning General VLAN
Ethernet	Physical	PMA Interoperability

OPEN Alliance ECU Test Specification for Automotive Ethernet

EV Testing HIL

- Electrical Tests incl. fault injection on charging connector pins
- Simulation of the complete charging behavior of the EVSE
- Analysis + Modification of SCC communication (Ethernet or CAN)
- Conformance / Interoperability EV Tests
 - ▶ Test cases from DIN 70122, ISO 15118-4/-5
 - ▶ Test cases from GB/T 34658
 - Self-developed test cases for CHAdeMO

EVSE Testing HIL

- Electrical Tests incl. fault injection on charging connector pins
- Simulation of the complete charging behavior of the EV
- Analysis + modification of SCC communication (Ethernet or CAN)
- Conformance / Interoperability Tests
 - CCS: ISO 15118-4/-5 (AC, DC, EIM, PnC)
 - ▶ GB/T 34658
 - ▶ IEC 61851-1/-23*
 - CHAdeMO *
 - More test cases for DIN 70122 *

* Planned

Agenda

1. How does HiL cover Automotive Trends?
--

HiL Solutions for future testing

3.

|--|

CANoe + vTESTstudio + VT System + DYNA4

For more information about Vector and our products please visit

www.vector.com

Author: VC PND3 Vector China

© 2024. Vector Automotive Technology (Shanghai) Co., Ltd. All rights reserved. Any distribution or copying is subject to prior written approval by Vector. V1.0 | 2024-02-01