
V1.0 | 2024-01-23

Database, Security and XiL Testing

Developing, Simulating and Testing for Ethernet System

2

1. Data source vCDL Beyond arxml for Ethernet and SOA

2. Network Interface for Automotive Ethernet

3. Communication Testing, Security and Analysis

4. More SOA – More Software – More Testing

Agenda

3

 Autonomous driving is challenging for current E/E architectures

 Interconnection of onboard and offboard systems

 Huge number of protocols involved
> CAN, LIN, FlexRay, Ethernet, Car2X

 Continuous software updates require a flexible architecture

 Service-oriented Architectures (SOA) address these challenges

 Definition of services independent of underlying protocols

 vCDL at a glance

 vCDL = Vector Communication Description Language

 Unified modelling of SOA for automotive and non-automotive use-cases

 Very lightweight compared to AUTOSAR

 Support of different communication protocols

 Convenient editor with syntax highlighting and code completion available

vCDL – A Domain-Specific Language for Service-Oriented Communication

Data source vCDL Beyond arxml for Ethernet and SOA

4

 Simulation & test without AUTOSAR descriptions, e.g.

 Rapid prototyping, no description available

 Development of tests with an informal Excel description

 Extension of AUTOSAR based descriptions, e.g.

 Adding further services

 Non-automotive domains: IoT, healthcare, railway, e.g.

 Testing of MQTT and DDS based connectivity services

 Test of pure software systems
> Independent of a certain communication protocol

 Comparison in CANoe: How was it before – how is it now

vCDL Use Cases

Data source vCDL Beyond arxml for Ethernet and SOA

Editor

vCDL
Model

Modelling
language

(e.g.
Franca)

Informal
description
(e.g. Excel)

5

➢Core Language (syntactically similar to C++):

 Human readable, ease of use, mergeable

 As few keywords as possible (but not less)

 Reasonable defaults for optional settings

 Support versioning and backward compatibility

 Consistent with programming languages

 Split models across multiple files

 Complex data types:

 array, list, struct, union, map, enum, bit field

 Primitive data types:

 bool, [u]int[1-64], float, double, string, time

 Physical and textual encodings for numeric data types

Core vCDL Language Design

Data source vCDL Beyond arxml for Ethernet and SOA

6

 Logical objects, representing communicating entities in a distributed system

 For example: ECUs, applications, sensors, …

 Similiar to objects in common prorgamming languages: C++, Java

Characteristics

 Independent from technologies and paradigms until properties of distributed objects are
defined

 Properties of distributed objects depends on the use case (e.g., ADAS, IoT, SIL, etc.)

 Can be used to describe provider and consumer side independently

Application Layer Support

 Definition of consumable data and data types
(scalar and complex data types are supported)

 Definition of how data is consumed
(as value, field, event, method)

Binding Support

 Attributes for used communication technology
(e.g., MQTT, SOME/IP, HTTP, etc.)

Distributed Objects

Data source vCDL Beyond arxml for Ethernet and SOA

7

 Datatypes, e.g.

 Basic / predefined datatypes: int, double, bool, enum, string

 Custom defined datatypes: struct, union, list, array

 Interfaces

 Definition / grouping of communication interfaces

> E.g. GPS sensor, Headunit, Camera

 Communication type and direction

> Method: RPC, Client/Server

> Data: Sender/Receiver, Event-based

 Distributed objects

 Instantiation of interfaces

 Same interface may be instantiated multiple times (e.g. Front camera, rear camera)

vCDL Building Blocks

Data source vCDL Beyond arxml for Ethernet and SOA

8

Application Scenario example

Data source vCDL Beyond arxml for Ethernet and SOA

Head
Unit

Back-end

GPS
Sensor

Design prototype for a head unit

 Head unit displays nearby car parks

 Including availability and parking fee

GPS sensor is periodically
transmitting position data Head unit receives

GPS data and
requests a list of
nearby car parks

9

vCDL Datatypes

Data source vCDL Beyond arxml for Ethernet and SOA

namespace DataTypes
{

struct Coordinates_struct
{

double lattitude;
double longitude;

}

enum Parking_Type
{

CAR_PARK = 1, UNDERGROUND = 2, PARKING_SPACE = 3
}

struct Parking_Info_struct
{

Parking_Type type;
uint32 capacity;
double availability;
double fee;
Coordinates_struct position;
string name;

}
}

10

vCDL Interfaces

Data source vCDL Beyond arxml for Ethernet and SOA

interface IGPS_Sensor

{

provided data Coordinates_struct Coordinates;

}

interface IHead_Unit

{

consumed data Coordinates_struct Coordinates;

consumed method array<Parking_Info_struct, 5> Get_Parking_Info(in Coordinates_struct coordinates);

}

interface IBackend

{

provided method array<Parking_Info_struct, 5> Get_Parking_Info(in Coordinates_struct coordinates);

}

11

vCDL Disrtributed Objects

Data source vCDL Beyond arxml for Ethernet and SOA

[Binding = "Abstract"]

object GPS_Sensor : IGPS_Sensor;

[Binding = "Abstract"]

object Head_Unit : IHead_Unit;

[Binding = "Abstract"]

object Backend : IBackend;

12

Visualization of Services

Data source vCDL Beyond arxml for Ethernet and SOA

Visualization of
service

communication
and roles

System
overview and
configuration

13

CANoe - Service Orientation

Data source vCDL Beyond arxml for Ethernet and SOA

Observation
of method
calls and
returns

Observation
of events

Observation
of service

states

 Built-in “service-oriented communication” instead of “network specific elements”

14

vCDL - SOME/IP,MQTT,DDS

Data source vCDL Beyond arxml for Ethernet and SOA

version 1.1;
namespace Home
{
namespace Data
{

interface IProvidedData
{
[CommunicationPattern="PublishSubscribe"]
[AutoConnect=true]
[Topic:“Bathroom/VentilatorSpeed“]
provided data int32 Speed;

}
interface IConsumedData
{
[CommunicationPattern="PublishSubscribe"]
[AutoSubscribe=true]
[AutoConnect=true]
[Topic:“Bathroom/VentilatorSpeed“]
consumed data int32 Speed;

}

[Binding="MQTT"]
object ProvidedDataInt : IProvidedDataInt
[Binding="MQTT"]
object ConsumedDataInt : IConsumedDataInt;

}
}

struct positionType {

float longitude;
float latitude;

}

struct statusType {

float speed;
bool break;

}

[Binding="DDS",
DDS::Reader::Reliability=RELIABLE,
DDS::Reader::History=KEEP_ALL]
interface Vehicle
{
// Topic subscribed by CANoe
[DDS::Topic::Name="/gps/position"]
consumed data positionType position;

// Topic published by CANoe
[DDS::Topic::Name="/vehicle/status"]
provided data statusType status;

}

[version=1.0, serviceId=11]

service Calculator

{

void Add(int32 operand1, int32 operand2, out
float result) ;

void Substract(int32 operand1, int32 operand2,
out float result) ;

void Multiply(int32 operand1, int32 operand2, out
float result) ;

void Divide(int32 operand1, int32 operand2, out
float result) ;

[udpEndpoint="192.168.1.10:40000",
sdMulticastEndpoint="239.0.0.1:30490"]

consumer Terminal;

[simulated = false, instanceId = 1];

provider VC121;

}

15

 Current Situation

 In many cases OEMs deliver AUTOSAR
extracts only which must be merged to a
system description

 Merging may take hours due to the size of
the files

 Each CANoe user would need to perform
these merges

 Modifications of AUTOSAR databases is very
complicated

 Solution

 Instead of groups in the Communication
Setup, the new AUTOSAR PreProcessor Tool
is provided and may be used by an AUTOSAR
expert providing the result to a team of
CANoe users

 The new AUTOSAR Converter can be used to
convert system descriptions in into the
CANoe format vcodm which can be modified
using the Model Editor

Beyond vCDL – *.arxml

Data source vCDL Beyond arxml for Ethernet and SOA

16

1. Data source vCDL Beyond arxml for Ethernet and SOA

2. Network Interface for Automotive Ethernet

3. Communication Testing, Security and Analysis

4. More SOA – More Software – More Testing

Agenda

17

Vector Ethernet Hardware Overview

Network Interface for Automotive Ethernet

USB to
Ethernet
Adapter

Ethernet Network Interfaces

Features and supported use cases

V
T
6
3
0
6

18

Network Analysis

Network Interface for Automotive Ethernet

 Verification of entire data paths:

 Transparent data validation
(e.g. Frame Errors)

 End-to-End transmission times

 Pass-through times of switches

 Information about dropped frames

 Possibility to affect communication with frames sent by a tool

ECU 2

ECU 3

ECU 4

ECU 5
ECU 1

Switch

VN5650/VN5240

Switch

USB3.0/Ethernet

TAP into relevant links

19

Simulation

Network Interface for Automotive Ethernet

 Simulation within an existing network

 Simple network access over integrated switch

 variable ECU wiring possible, without simulation impact

CANoe.Ethernet

ECU 3

ECU 5

VN5650

S
w

it
c
h

ECU 2

ECU 4

ECU 1

ECU 6

USB3.0/
Ethernet

Switch

Network 1
Network 1

20

Direct Access

Network Interface for Automotive Ethernet

 Individual access to each link e.g. for

 Flash reprogramming of ECUs (Electronic Control Units)

 Vehicle diagnostics

 Test benches (test of multiple identical systems)

 Test of ECUs with multiple ports

Vector Tool
(e.g. CANoe)

VN5650

USB3.0/
Ethernet

System 1

…

System n

Link
Network 1

Link
Network n

Link
Network 2

21

Media Conversion

Network Interface for Automotive Ethernet

 Media conversion between different physical layers

 VN5240:

 Up to 3 converters between IEEE 100BASE-T1/1000BASE-T1
and IEEE 100BASE-TX/1000BASE-T

 VN5650:

 Up to 4 converters between IEEE 100BASE-T1/1000BASE-T1
and IEEE 100BASE-TX/1000BASE-T

VN5650/VN5240PC with standard
Ethernet interface 100BASE-T1/1000BASE-T1

100BASE-T1/1000BASE-T1

1000BASE-T

100BASE-TX

Evaluation boards

ECU 1

ECU 4

Link

Link

22

 Access on diagnostic links via the 100BASE-TX ports as
a tester

 Set/Read DoIP Activation Line by using the onboard
analog/digital signal interface

 TAP in-between the tester and DUT communication

 Capture diagnostic requests/responses

 Capture forwarded messages on in-vehicle side

 Capture DoIP Activation signaling

Diagnostics Over IP

Network Interface for Automotive Ethernet

Network A

Tester

DUT

Link

GW

100BASE-TX

100BASE-TX

D
o
IP

A
c
ti
v
a
ti
o
n
 L

in
e

Analog/
Digital IN

GW

ECU1

Link

ECU1

100BASE-T1

100BASE-T1

23

 Different cable variants are available, to adapt ix industrial to
different other plug systems:

 H-MTD

 HSD

 MATEnet

 DSUB9

 RJ45

 The cables are available with plug/header (male contacts) or jack/frame (female contacts)

 Further details can be found in the Vector Network Interface accessories manual

AEcable Family (Cable Sets for 100BASE-T1/1000BASE-T1)

Network Interface for Automotive Ethernet

24

Connector for Vector Interfaces: YCP-BPR09ACX-S1MSCDX-051X YAMAICHI ELECTRONICS

Cables for MultiGBASE-T1 (2.5 Gbps, 5 Gbps and 10 Gbps)

Network Interface for Automotive Ethernet

Part No Article name Connector Type Photo

05218 AEcable MultiGig EVA CHA with open end
For EVAluation purposes

05216 AEcable MultiGig H-MTD Zj CHA:
H-MTD, coding Z, type jack

05117 AEcable MultiGig H-MTD Zp CHA:
H-MTD, coding Z, type plug

25

VNmodules – Flexible Physical Layer Modules

Network Interface for Automotive Ethernet

 VN5650 is flexible and modular hardware interfaces

 Interchangeable PHY modules
> Different modules for current and upcoming Ethernet physical

layers: 10BASE-T1S, 100BASE-T1, 10000BASE-T1, MultiGig
Automotive Ethernet, MACsec

26

1. Data source vCDL Beyond arxml for Ethernet and SOA

2. Network Interface for Automotive Ethernet

3. Communication Testing, Security and Analysis

4. More SOA – More Software – More Testing

Agenda

27

Measurement and Analyzing

Communication Testing, Security and Analysis

Measurement setup

Ethernet

Interface

28

Simulation in CANoe

Communication Testing, Security and Analysis

Simulation setup

Ethernet

Interface

Communication
setup

29

Protocol Monitor And Trace Window

Communication Testing, Security and Analysis

Ethernet Frame:

Port

Trace

Protocol
Monitor

Ethernet PayloadIPv4 PayloadUDP PayloadSOME/IP Payload

30

Ethernet Packet Builder

Communication Testing, Security and Analysis

 Ethernet Packet Builder: The window is divided into several parts

 Raw Frame

Hexadecimal presentation field:
Raw frames can be imported

ASCII presentation field:
Data can be copied from the clipboard or can be
edited

Bytes per line and Packet length can be adjusted.

 Packet Information

Protocol header fields as well as the payload of the
packet can be modified.

Constant MAC Ids as well as MAC Ids of real
adapters can be selected.

 Package List

Packet description, packet length and payload
length can be modified.

31

Ethernet Packet Builder

Communication Testing, Security and Analysis

 Settings:

Default values for source and destination
MAC ID, IP addresses and ports of added
packets

32

 Periodic or spontaneous transmission of Ethernet packets

 IPv4 Socket-based transmission of UDP and TCP data

 Autonomous establishment of TCP connection

 Payload can be modified at any time.

*Only CANoe; feature is in maintenance mode

Ethernet Interactive Generator Block

Communication Testing, Security and Analysis

33

Ethernet Packet

Communication Testing, Security and Analysis

 Send one ethernet packet (without IP information)

on key 'a'
{

ethernetPacket txPacket;
int i;

txPacket.msgChannel =1;
txPacket.source = ethGetMacAddressAsNumber("20:00:00:00:00:01");
txPacket.destination = ethGetMacAddressAsNumber("FF:FF:FF:FF:FF:FF");
txPacket.type = 0XF123;
txPacket.Length = 100;
for(i=0;i<txPacket.length;i++)
{
txPacket.byte(i) = i;

}

output(txPacket);
}

 Output (Ethernet)

void output(ethernetPacket packet)

34

Send IP Segments with CAPL

Communication Testing, Security and Analysis

 Example

on key 'b'
{
ethernetPacket IpPacket;

IpPacket.source.ParseAddress("20:00:00:00:00:01");
IpPacket.destination.ParseAddress("20:00:00:00:00:02");

IpPacket.ipv4.init(); //Initialize the protocol
IpPacket.ipv4.source.ParseAddress("192.168.100.1");
IpPacket.ipv4.destination.ParseAddress("192.168.100.2");
IpPacket.ipv4.ResizeData(100); //Resizes the payload of a protocol
IpPacket.ipv4.byte(0) = 0xff;

IpPacket.CompletePacket();
//Calculates the checksum and length field for all protocols
output(IpPacket);

}

35

Application, Conformance and Robustness Testing with SOMEIP

Communication Testing, Security and Analysis

Application
Conformance

Robustness

Invalid input

Valid
Fuzz Testing

36

SOME/IP Server and ETS testing in TC8

Communication Testing, Security and Analysis

 CANoe Option Ethernet supports TC8 test specification

 The configuration does not require extra licensing

 A simulation of the DUT (Golden Device) is included

 Source code with vTESTstudio for free

37

What is vTESTstudio?

Communication Testing, Security and Analysis

Table-based Design

Coding-based Design

Model-based Design

Data-driven Design

vTESTstudio

vTestStudio GUI

TestUnitBuildCLI

Vector Tools

3rd party HW/SW

Traceability for ISO
26262,ISO 21434…

MiL,SiL,PiL,HiL,
ViL,Fuzzy,TC8…

AUTOSAR, C,
C++, Python

ADAS,HPC,ZCU,
HMI,OTA…

38

Security and Protection

Communication Testing, Security and Analysis

Ethernet Header PDU HeaderIP Header
TCP Header

UDP Header
PDU PayloadSecOC

Ethernet Header PDU HeaderIP Header
TCP Header

UDP Header
PDU Payload(D)TLS (D)TLS

Ethernet Header PDU HeaderIP Header
TCP Header

UDP Header
PDU PayloadIPsec Authentication

Header

Ethernet
Header

PDU HeaderIP Header
TCP Header

UDP Header
PDU PayloadMACsec

Authentication
Header

MAC+FV

ICV
Sec
Tag

Authentic

Authentic
Confidential

Authentic
Confidential

Authentic
Confidential

39

Smart Charging with TLS in ISO 15118 via PLC

Communication Testing, Security and Analysis

ISO 15118-2 ISO 15118-20

TLS is mandatory for the following
use-cases:

 Plug & Charge

 Value-Added-Service

 TLS is always mandatory

(EIM & PnC)

Supported Cipher Suites
(TLS 1.2)

 TLS_ECDH_ECDSA_WITH

_AES_128_CBC_SHA256

 TLS_ECDHE_ECDSA_WITH

_AES_128_CBC_SHA256

 TLS_ECDH_ECDSA_WITH

_AES_128_GCM_SHA256

 TLS_ECDHE_ECDSA_WITH

_AES_128_GCM_SHA256

40

Tools without Security is challenges!

Communication Testing, Security and Analysis

E.g., Secured Onboard Communication

Communication analysis

Reading data

Verification of authentication information

Check data integrity

Detection of old / replayed data

Remaining bus simulation / Stimulation

Authenticator calculation

Freshness management

41

Testing of Security-Protected ECUs and Networks with the Security Manager

Communication Testing, Security and Analysis

 Communication: SecOC

 Diagnostics: Authentication

 Diagnostics: Variant Coding

 TLS: Simulation of Client and Server

 TLS: TLS Observer using Master Secret

 TLS: DoIP over TLS

 IPsec: IKEv2 support for certificate based peer authentication, dead peer

detection, IKE fragmentation and IKE rekeying

 IPsec: Import of StrongSwan IPsec configurations

 IPsec: Full control of the Security Policy Database

 MACsec: Standard 802.1 AE 2018

 MACsec: Key Agreement (MKA)-Protokoll 802.1.x-2020

 V2X certificate communication

42

 Encrypted DoIP communication via TLS

 Support for built-in diagnostic
channel (tester and simulation)

 Support of cypher suites defined in
ISO 13400-2:2019, e.g. Null-Cipher
for debugging purposes

 Interpretation of diagnostics
communication even for fully
encrypted communication

 Support of DoIP protocol version 3

 Configuration of security profile in
Security Manager

Diagnostics: DoIP via TLS

Communication Testing, Security and Analysis

43

1. Data source vCDL Beyond arxml for Ethernet and SOA

2. Network Interface for Automotive Ethernet

3. Communication Testing, Security and Analysis

4. More SOA – More Software – More Testing

Agenda

44

 Cars are not just another IT software

 Testing of all production variants highly desired

 Tests must be performed on various integration levels

> Software component level

> ECU level

> Subsystem level

> Entire vehicle network level

> Test drive

 Most important concepts

 Simultaneous operation of all networks

 Same time base for all networks and application layer

objects

> Allows testing of gateway applications

 Scalability (distributed operation on multiple PCs) for

HPC and ZCU

More than TC8, not only Ethernet

More SOA – More Software – More Testing

45

Gateway tester

More SOA – More Software – More Testing

Routing
Table

DBC

Fibex

ARXML

C
C#

C++

CAPL

Import of
bus description
and routing table

Configuration of routing
(semi) automatic and manual
depending on project specific implementation

Generation of CAPL code
and CANoe
configuration

46

HiL

More SOA – More Software – More Testing

47

Scenario:

 CANoe can directly connect to the Internet/SUT
with IP based protocols

Examples:

 HTTP via OS TCP/IP stack

 MQTT via broker which is reachable in LAN/WAN

Connection Scenarios for SUT for connectivity

More SOA – More Software – More Testing

SUT

CANoe/

CANoe4SW

IoT
Enabler

1

Scenario:

 SUT cannot connect to the Internet,
i.e. non IP based protocols

Examples:

 BT/BTLE

 UWB

2

CANoe/CANoe4SW

Simulation
Kernel

Analysis

Test
Execution

Engine

APIs

P
ro

to
c
o
l
S
u
p
p
o
rt

WiFi, BT/BLE, NFC, UWB …

HTTP

48

Unit Test

Layers of Test Interfaces

More SOA – More Software – More Testing

Logic:
Function or

Service Code

Functional System Perspective (HW)

Implementation
Perspective

Functional System Boundary (mechatronic system, HW)

Code Boundary

“Service Layer”: System signals and services, logical perspective

Functional System Boundary (SW)

Runtime

Dynamics

Runtime

Dynamics

System signals and services, physical perspective

SIL

HIL

Functions with parameters, variables

Functional System Perspective (SW)

Input

values

Output

values

HW
Interface

HW
Interface

<focus of today>

(Software-in-the-Loop)

(Hardware-in-the-Loop)

49

ExecutionAuthoring

Test Methods – Summary

More SOA – More Software – More Testing

SW Unit Verification

ECU Integration Tests
(SIL)

HW/SW Integration Tests
(HIL)

VectorCAST

Test Units
Unit Tests

CANoe SE*
(automation)

CANoe+DYNA4
(desktop)

CANoe4SW+DYNA
4 SE

(automation)

CANoe +DYNA4
(desktop)

VectorCAST
(desktop)

VectorCAST
SE

(automation)

Debugging

SWC Integration Tests
(SIL)

Test Units
Test Units

vTESTstudio

Simulation
Environment

CANoe, vscode

CANoe4SW
+DYNA4 SE
(automation)

CANoe+DYNA4
(desktop)

Simulation
Environment

CANoe

Source
Code

IDE

Unit Under Test

Virtual Target

Real Target

SWCs without
BSW stack

Code
Code

Input

System Description/
DEXT

Input

System Description/
DEXT

Input

System Description/
DEXT

Test UnitsSW/SW
Integration Tests

PC-lint Plus

Test UnitsCoding
Rules

VectorCAST

Test Case
Source
Code

IDE

PC-lint Plus
(desktop/

automation)

Test Units
Test Units

vTESTstudio

Simulation
Environment

CANoe, vscode

Test Units
Test Units

vTESTstudio

Simulation
Environment

CANoe, vscode

Simulation
Environment

CANoe

Source
Code

IDE

Simulation
Environment

CANoe

Source
Code

IDE

* CANoe SE is not yet available.
In the meantime, CANoe pro TBE can be used for automation.

50

More SOA – More Software – More Testing

 Kevin.fan@vector.com

