Wireless Communications

OVER-THE-AIR MEASUREMENTS OF ELECTRICALLY LARGE BEAM-FORMING ANTENNA ARRAYS

Dr. Benoit Derat Senior Director of Engineering for Systems and Projects

Guenter Pfeifer Product Manager, OTA Systems

ROHDE&SCHWARZ

Make ideas real

INTRODUCTION

- Active antenna arrays are used in a wide range of applications: mobile devices and networks, satellite communications, radars...
- In wireless communications, arrays offer two essential capabilities:
 - Beamforming to focus the radiation towards the user(s)
 - Boosting the realized gain in the wanted direction
 - Reducing the radiated power in unwanted directions
 - Mitigating path loss effects / improving SNR
 - Spatial multiplexing through beamformed transmission of various data to users located at different locations a.k.a. massive or multi-user MIMO

1 Antenna Array and Beamforming Principles

2 Over-The-Air Characterization of Active Antenna Systems

3 Example of Active Antenna Array Technology: the IMST Santana V4

4 OTA Measurement of the Example Array in the ATS1800C CATR

Antenna Array and Beamforming Principles

2 Over-The-Air Characterization of Active Antenna Systems

3 Example of Active Antenna Array Technology: the IMST Santana V4

4 OTA Measurement of the Example Array in the ATS1800C CATR

ANTENNA ARRAYS: RELEVANT DEFINITIONS (IEEE STD 145)

- Array antenna: An antenna comprised of a number of radiating elements the inputs (or outputs) of which are combined. Syn: antenna array.
- Array element: In an array antenna, a single radiating element or a convenient grouping of radiating elements that have fixed relative excitations.
- Active array antenna system: An array in which all or part of the elements are equipped with their own transmitter or receiver, or both.
- Adaptive antenna system: An antenna system having circuit elements associated with its radiating elements such that one or more of the antenna's properties are controlled by the received signal.
- Active Antenna Systems (AAS) in 3GPP

<u>Source:</u> IMST GmbH, numerical model based on: D. Anguiano Sanjurjo, Investigation of Hybrid Simulation Methods for Evaluation of EMF Exposure in Close Proximity of 5G Millimeter-Wave Base Stations

BEAMFORMING: RELEVANT DEFINITIONS (IEEE STD 145)

- **Beam (of an antenna):** the major lobe of the radiation pattern of an antenna.
- ► Scan angle: the angle between the direction of the maximum of the major lobe or a directional null and a reference direction. Syn: beam angle.
- Beam steering: changing the direction of the major lobe of a radiation pattern.
- **Digital beamforming array:** an antenna array where beamforming is performed by software rather than hardware.

0° beam steering (broadside)

SUPERPOSITION OF SPATIAL FIELDS

- Arrays utilize the superposition of spatial fields of each element to
 - Form a beam in the wanted direction
 - Improve certain radiation characteristics of the array (e.g. side-lobe level)
- Shaping and steering of the beam is obtained through adequate phase shift and amplitude control of RF path to each element

x-component electric field magnitude

BEAMFORMING IN WIRELESS COMMUNICATIONS TODAY AND TOMORROW

- ▶ With 5G NR, beamforming in the far-field
 - at FR1 and FR2 (mmW) for radio base stations (incl. spatial multiplexing, MU-MIMO)
 - at FR2 for user equipment / mobile devices
- 6G sub-THz expected to use electrically larger arrays in the radiative near-field; beamforming turns into NF focusing at depth-of-focus (DF).
 - Community is talking of *Wavefront Engineering* rather than beamforming.

THE PLANE-WAVE SPECTRUM / FOURIER FORMALISM

$$\widehat{E_x}(k_x, k_y, 0) = \iint_{-\infty}^{+\infty} E_x(x, y, 0) e^{j(k_x x + k_y y)} dx dy$$
$$E_x(x, y, 0) = \frac{1}{4\pi^2} \iint_{-\infty}^{+\infty} \widehat{E_x}(k_x, k_y, 0) e^{-j(k_x x + k_y y)} dk_x dk_y$$

THE PLANE-WAVE SPECTRUM / FOURIER FORMALISM

► Propagation of the PWS:

$$\widehat{E_x}\left(k_x, k_y, R\right) = \widehat{E_x}\left(k_x, k_y, 0\right) e^{-jR\sqrt{k_0^2 - k_x^2 - k_y^2}}$$

- Visible / radiative region within the k_0 -circle
- Invisible / reactive region outside the k_0 -circle
- ► Far-field relation:

$$\operatorname{EIRP}_{x}(\theta,\phi) = \frac{2\pi R^{2}}{\eta} |E_{x}(R,\theta,\phi)|^{2}$$
$$= \frac{2\pi}{\lambda^{2}\eta} |\widehat{E_{x}}(\sin\theta\cos\phi,\sin\theta\sin\phi)|^{2}\cos^{2}\theta$$

BEAMFORMING AS SPECTRAL FILTERING

- Simplifying assumption: the field created by each element is identical, just shifted in space
- A space translation corresponds to a linear phase shift in the k-space
- ► $a_{m,n}$: complex excitation coefficients

$$\widehat{E_x^{ar}} (X, Y, 0) = \widehat{E_x^{el}} (X, Y, 0) \frac{\sin(k_0 M \frac{d_x}{2} X) \sin(k_0 N \frac{d_y}{2} Y)}{\sin(k_0 \frac{d_x}{2} X) \sin(k_0 \frac{d_y}{2} Y)}$$

$$\begin{array}{l} X = k_x / k_0 \\ Y = k_y / k_0 \end{array}$$

$$\begin{array}{l} x_{m,n} = 1 \text{ broadside radiation} \end{array}$$

NORMALIZED SPECTRAL ARRAY FACTOR

BEAM STEERING: FILTER TRANSLATION IN K-SPACE

- Beam steering is obtained by applying a linear phase progression across elements
- Phase shift between adjacent elements (or time delay):

$$\Delta \mathbf{\Phi} = k_0 d \sin \theta$$

► Impact in *k*-space:

$$\widehat{E_x^{ar}}(X,Y,0) = \widehat{E_x^{el}}(X,Y,0)$$

$$\mathbf{\times} \begin{bmatrix} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} a_{m,n} e^{jk_0(md_x X + nd_y Y)} \\ \mathbf{\times} \begin{bmatrix} a_{m=0} \sum_{n=0}^{N-1} a_{m,n} e^{jk_0(md_x X + nd_y Y)} \\ \mathbf{\times} \begin{bmatrix} a_{m=0} \sum_{n=0}^{N-1} a_{m,n} e^{jk_0(md_x X + nd_y Y)} \\ \mathbf{\times} \begin{bmatrix} a_{m=0} \sum_{n=0}^{N-1} a_{m,n} e^{jk_0(md_x X + nd_y Y)} \\ \mathbf{\times} \begin{bmatrix} a_{m=0} \sum_{n=0}^{N-1} a_{m,n} e^{jk_0(md_x X + nd_y Y)} \\ \mathbf{\times} \begin{bmatrix} a_{m=0} \sum_{n=0}^{N-1} a_{m,n} e^{jk_0(md_x X + nd_y Y)} \\ \mathbf{\times} \begin{bmatrix} a_{m=0} \sum_{n=0}^{N-1} a_{m,n} e^{jk_0(md_x X + nd_y Y)} \\ \mathbf{\times} \begin{bmatrix} a_{m=0} \sum_{n=0}^{N-1} a_{m,n} e^{jk_0(md_x X + nd_y Y)} \\ \mathbf{\times} \begin{bmatrix} a_{m=0} \sum_{n=0}^{N-1} a_{m,n} e^{jk_0(md_x X + nd_y Y)} \\ \mathbf{\times} \begin{bmatrix} a_{m=0} \sum_{n=0}^{N-1} a_{m,n} e^{jk_0(md_x X + nd_y Y)} \\ \mathbf{\times} \begin{bmatrix} a_{m=0} \sum_{n=0}^{N-1} a_{m,n} e^{jk_0(md_x X + nd_y Y)} \\ \mathbf{\times} \begin{bmatrix} a_{m=0} \sum_{n=0}^{N-1} a_{m,n} e^{jk_0(md_x X + nd_y Y)} \\ \mathbf{\times} \begin{bmatrix} a_{m=0} \sum_{n=0}^{N-1} a_{m,n} e^{jk_0(md_x X + nd_y Y)} \\ \mathbf{\times} \begin{bmatrix} a_{m=0} \sum_{n=0}^{N-1} a_{m,n} e^{jk_0(md_x X + nd_y Y)} \\ \mathbf{\times} \begin{bmatrix} a_{m=0} \sum_{n=0}^{N-1} a_{m,n} e^{jk_0(md_x X + nd_y Y)} \\ \mathbf{\times} \begin{bmatrix} a_{m=0} \sum_{n=0}^{N-1} a_{m,n} e^{jk_0(md_x X + nd_y Y)} \\ \mathbf{\times} \begin{bmatrix} a_{m=0} \sum_{n=0}^{N-1} a_{m,n} e^{jk_0(md_x X + nd_y Y)} \\ \mathbf{\times} \begin{bmatrix} a_{m=0} \sum_{n=0}^{N-1} a_{m,n} e^{jk_0(md_x X + nd_y Y)} \\ \mathbf{\times} \begin{bmatrix} a_{m=0} \sum_{n=0}^{N-1} a_{m,n} e^{jk_0(md_x X + nd_y Y)} \\ \mathbf{\times} \begin{bmatrix} a_{m=0} \sum_{n=0}^{N-1} a_{m,n} e^{jk_0(md_x X + nd_y Y)} \\ \mathbf{\times} \begin{bmatrix} a_{m=0} \sum_{n=0}^{N-1} a_{m,n} e^{jk_0(md_x X + nd_y Y)} \\ \mathbf{\times} \begin{bmatrix} a_{m=0} \sum_{n=0}^{N-1} a_{m,n} e^{jk_0(md_x X + nd_y X \\ \mathbf{\times} \begin{bmatrix} a_{m=0} \sum_{n=0}^{N-1} a_{m,n} e^{jk_0(md_x X + nd_y X \\ \mathbf{\times} \begin{bmatrix} a_{m=0} \sum_{n=0}^{N-1} a_{m,n} e^{jk_0(md_x X + nd_y X \\ \mathbf{\times} \begin{bmatrix} a_{m=0} \sum_{n=0}^{N-1} a_{m,n} e^{jk_0(md_x X + nd_y X + n$$

<u>Source</u>: P. Delos et al., *Phased Array Antenna Patterns* — *Part 1, Analog Devices, Analog.com*

SPECIFIC WINDOW FUNCTIONS AND BEAM-SHAPING

$$\left[\sum_{m=0}^{M-1}\sum_{n=0}^{N-1} a_{m,n} e^{jk_0(md_x X + nd_y Y)}\right]$$

- Applying specific weightings a_{m,n} or window functions allow shaping of the beam to meet target criteria
 - Kaiser, Saramäki: max. energy in the main lobe
 - Dolph-Chebyshev: minimum main-lobe width for a specified max side-lobe level
 - Ultraspherical: control of side-lobe pattern
- Additional considerations: choice of position of elements within the array, non-regular grids

FIGURE 1: A typical window's normalized amplitude spectrum and some common spectral characteristics.

<u>Source</u>: S. W. A. Bergen, and A. Antoniou, *Design of Ultraspherical Window Functions with Prescribed Spectral Characteristics.*

THE PROBLEM OF ARRAY PATTERN SYNTHESIS

- LCMV beamforming: linearly constrained beamforming with min. variance
- Many array synthesis problems are non-convex and hence difficult optimization problems (NP-hard)
- Global optimization approaches: computational cost; non-optimal solutions
- Approaches to find efficient solutions to more complex problems exist, e.g. semi-definite relaxation applied to shaped beam with phase control only

Source: B. Fuchs, Application of Convex Relaxation to Array Synthesis Problems.

ADDITIONAL CONSIDERATIONS

- Mutual coupling of the elements within the array and hence their input impedance varies with the weighting:
 - For reference: AP/MTT/EMC Webinar Series with F. Leong, Antenna Arrays – Active Impedance & Beamforming: <u>https://youtu.be/nn9fhwkSG_w</u>
- Array calibration
 - Optimal sets of coefficients found in simulation
 - In real life:
 - Non-ideal attenuators, phase shifters, transmission lines, etc...
 - Limitations in ability to qualify specific deviations
 - Phase not accessible in an over-the-air setup
 - For reference: B. Derat, Over-the-air testing using plane-wave synthesis: from theory to realization, AMTA 2020 Opening Keynote, available on R&S website.

16 Rohde & Schwarz

1 Antenna Array and Beamforming Principles

2 Over-The-Air Characterization of Active Antenna Systems

3 Example of Active Antenna Array Technology: the IMST Santana V4

4 OTA Measurement of the Example Array in the ATS1800C CATR

OTA VS. ANTENNA TEST: FUNDAMENTAL DIFFERENCES

- Antenna measurement: evaluation of fundamental antenna radiation properties
- ► OTA: assessment of the transceiver performance, including the antenna pattern
- ► In OTA
 - No cable access to the DUT
 - Wideband modulated signals with complex waveforms
 - DUT TX / RX RF chains are different
 - Measurement of system parameters (EIRP, EIS, TRP, TIS, EVM, ACLR, etc...)
 - Dynamic capabilities of the DUT

ANTENNA MEASUREMENT VS. OTA TESTING

5G mmW antenna measurement system

TYPICAL "FAR-FIELD" TEST DISTANCE

DIRECT FAR-FIELD MEASUREMENTS BELOW FRAUNHOFER

C63 American National Standards CommitteeC63[®] Electromagnetic Compatibility

Electromagnetic Compatibility Subcommittee 4 – Wireless & ISM Measurements

C63.xx – Millimeter wave Massive MIMO Distance Study

Chair: Dave Case

Vice-Chair: Benoit Derat

Secretary: Jerry Ramie

White paper Draft Outline Revision 2112/2/2022

Discussion on Measurement Test Distance for Determining EIRP or TRP for Active Antenna Systems

Abstract: This document discusses general requirements and methodologies for the determination of far-field peak gain, Equivalent Isotropic Radiated Power (EIRP) and Total Radiated Power (TRP) of Active Antenna systems (AAS), at ranges shorter than the classical Fraunhofer distance.

Find more details on our R&S Demystifying EMC (DEMC) 2023 on-demand videos

THE FHD IS NOT ENOUGH

- Accurate sidelobes and nulls measurement requires good phase uniformity within the quiet zone
- ► This requires going beyond the FHD

"IEEE Recommended Practice for Antenna Measurements," in IEEE Std 149-2021 (Revision of IEEE Std 149-1977), vol., no., pp.1-207, 18 Feb. 2022.

Figure 2—Calculated radiation patterns illustrating the effect of quadratic phase errors encountered in measuring patterns at the ranges indicated. A 30 dB Taylor aperture current distribution is assumed.

THE COMPACT ANTENNA TEST RANGE (CATR)

1 Antenna Array and Beamforming Principles

2 Over-The-Air Characterization of Active Antenna Systems

S Example of Active Antenna Array Technology: the IMST Santana V4

4 OTA Measurement of the Example Array in the ATS1800C CATR

IMST SANTANA V4 BEAMFORMING ARRAY

- 8x8 Ka band Tx phased array module with integrated front end
- Satcom communication applications
- Dual linear and circular polarization supported
- Modules can be integrated into larger arrays

ANTENNA SPECIFICATIONS

- 64 elements: dielectric waveguide aperture antennas
- ► Matching: S11 < 10 dB
- ► Directivity: 25 dBi
- ► 3dB beamwidth: 11°
- Scanning performance diagonal (± 45°): ± 55°
- Scanning performance phi=0° and 90°: ± 27.5°
- ► Scan loss: < 5 dB

RF AND PRODUCT SPECIFICATIONS

- ▶ RF input: 29.5 GHz 30 GHz
- ► WR28 waveguide interface
- RF max. output power/module : 1 Watt (0 dBW)
- ▶ EIRP: ~ 57 dBm
- 2 x 64 channel phased array (dual polarized)
- Size PCB: 56mm x 56mm x 2.7mm

CHIPSET DETAILS

SIMULATION RESULTS – CIRCULAR POLARIZATION

Electric field @ 29.75 GHz at divider network and antenna aperture

DUT – SANTANA MODULE TX EVAL KIT

TYPICAL ANTENNA SCAN

AGENDA

1 Antenna Array and Beamforming Principles

2 Over-The-Air Characterization of Active Antenna Systems

3 Example of Active Antenna Array Technology: the IMST Santana V4

4 OTA Measurement of the Example Array in the ATS1800C CATR

Find out more
www.rohde-schwarz.com/5G

THANK YOU

ROHDE&SCHWARZ

Make ideas real

