ENABLING THE NEXT LEVEL OF AUTONOMOUS DRIVING WITH ADVANCED OBJECT GENERATION

Mihai Aldea Product Manager, Signal Generators Andreas Ibl Product Manager, Microwave Imaging

ROHDE&SCHWARZ

Make ideas real

AGENDA

- Automotive radar technology and market update
- QAT100 Electronically steerable antenna array
- AREG800A advanced automotive radar echo generator
- Applications and solutions
- Automotive radar testing product portfolio
- Summary and learnings

RADAR BASED AUTONOMOUS DRIVING

AUTOMOTIVE RADAR EVOLUTION

RADAR BEING PART OF SENSOR FUSION PILLAR OF AUTONOMOUS DRIVING

Strengths of Radar Sensors versus other ADAS Sensors

- Instantaneous measurement of distance, vertical angle, horizontal angle and velocity (4D)
- Works in the dark and with adverse conditions such as smoke, fog and dust
- Combines well with camera in redundant systems due to different operating frequencies
- Cost efficient due to high volume and market penetration
- Radar still has strong innovation potential towards imaging radar

RADAR TECHNOLOGY TRENDS TYPICAL SENSOR PARAMETERS

Radar Module Parameters	Short-Range Radar	Standard Mid-Range Radar	Premium Mid-Range Radar	Standard Long-Range Radar	Premium Long-Range Radar	Imaging Radar
Frequency Range [GHz]	24,76-77,77- 81	76-77	77-81	76-77	76-77	76-81
Typical Bandwidth [MHz]	200, 1000, 4000	1000	2000	500	1000	2000
Range [m]	80	150	150	250	300	300
Range Resolution [cm]	300, 30, 3.5	30	7.5	75	30	60, 9.5
FOV Azimuth / Elevation [°]	±60 / ±0	±30 / ±0	±50 / ±15	±15 / ±5	±15 / ±10	±50 / ±15
Typical Channel Number [Transmit / Receive]	3 TX / 4 RX	4 TX / 8 RX	8 TX / 12 RX	4 TX / 8 RX	12 TX / 16 RX	48 TX / 48 RX

(Data sheet values of commercially available sensors from various suppliers)

RADAR TECHNOLOGY TRENDS

Technology Trends

- 5/6th generation radar sensors dominate the market
- Single Chip CMOS with 5 GHz bandwidth and more complex modulation
- High priority on interference mitigation
- Radar antenna aperture is increasing
- Very short distance object simulation required during radar sensor R&D and validation
- Need for complex moving object scenarios to be emulated in a lab environment is increasing
- OEMs want an improved test coverage:
 - Scenario validation (HIL, VIL)
 - Electromagnetic susceptibility testing
- AI will improve object detection and tracking capabilities

- Highly dynamic radar chip supply chain
 - Large TIER1s develop own chips
 - New Asian suppliers for mainstream ICs
- Imaging radar takes off, and 30% market share is expected in 2027
- Radar sensor market is growing with 13%.
- Many new players in the radar supply chain

AGENDA

- Automotive radar technology and market update
- QAT100 Electronically steerable antenna array
- AREG800A Advanced Automotive Radar Echo Generator
- Applications and Solutions
- Automotive radar testing product portfolio
- Summary and learnings

ADVANTAGES R&S®QAT100 VS. MECHANICAL APPROACH

OTA radar stimulation with azimuth simulation without needing to physically move antennas:

- Less wear and tear
- Better RF performance
- No mechanical handovers required

vibration

Perfectly fitted for ViL testbed mounting:

- Reduced amount of RF connections
- Reliable due to vibration robust design

Precise and repeatable

96 TX antennas guarantee a precise and repeatable azimuth simulation without the need of physical movement:

- High precision
- Great repeatability
- High resolution

Several Frontends can be stacked to simulate up to 360° of radar environment.

- Highly flexible and ready for expansion
- Radar FOV of several sensors can be simulated by one or multiple frontends

Clean RF - no reflections from FE

The PCB antennas have a much lower RCS as the standard gain horns used in other systems. Together with the QAT-B50 shielding system, a shielded RF environment can be guaranteed

- Reliable operation
- Reduced influence of other T&M equipment
- No testbed mode required for the radar

R&S[®]QAT100 with QAT-B11 (SIMO) frontend

- 96 transmit & 5 receive antennas
- **Optional second independent TRX line** ٠
- Simulation of up to 8 echoes from ٠ different directions

R&S[®]QAT100 with QAT-B21 (MIMO) frontend

- 96 transmit / receive antenna pairs •
- Optimized for MIMO technology ٠
- Simulation of up to 4 echoes from different • directions

R&S[®]QAT100 FRONTEND VERSIONS

R&S®QAT100 QAT-B11 / -B2 ANTENNA NUMBERING

R&S[®]QAT100 QAT-B21 ANTENNA NUMBERING

R&S[®]QAT100 with QAT-B11 (SIMO) frontend

- 96 transmit & 5 receive antennas
- Optional second independent TRX line
- Simulation of up to 8 echoes from different directions

R&S[®]QAT100 with QAT-B21 (MIMO) frontend

- 96 transmit / receive antenna pairs
- Optimized for MIMO technology
- Simulation of up to 4 echoes from different directions

R&S®QAT100 WITH QAT-B21

Segment #1	Segment #2	
• • • • • • • • • • • • • • • • • • • •	•••••••••••••••••••••••••••••••••••••••	••••

- Segment mode still available
- Intersecting targets only at certain positions

FIELD-OF-VIEW & ANGULAR RESOLUTION

The field-of-view (FOV) and angular resolution achievable with the R&S[®]QAT100 are dependent on the setup but can be calculated as follows:

Field-of-view:

Angular resolution:

$$\alpha = 2 \cdot \tan^{-1}\left(\frac{351mm}{d}\right) \qquad \Delta \alpha = \tan^{-1}\left(\frac{3.7mm}{d}\right)$$

Distance (d)	Field-of-view (α)	resolution ($\Delta \alpha$)
500 mm	38.7°	0.42°
700 mm	28.1°	0.30°
1000 mm	19.9°	0.21°
1500 mm	13.34°	0.14°
2100 mm	10.0°	0.10°

R&S®QAT100 ADVANCED ANTENNA ARRAY QAT-Z50 SHIELDING SYSTEM

- QAT-Z50 shielding system
 - 50 cm long, 10° opening
 - Direct mounting kit for QAT

Challenges

- Car mounting kit respectively
 QAT stand in front of car
- Customization based on e.g.
 CAD required

AGENDA

- Automotive radar technology and market update
- QAT100 Electronically steerable antenna array
- AREG800A Advanced Automotive Radar Echo Generator
- Applications and Solutions
- Automotive radar testing product portfolio
- Summary and learnings

R&S®AREG800A AUTOMOTIVE RADAR ECHO GENERATOR MODERN TEST SETUP CORE ELEMENT, R&S®AREG800A UNIQUE FEATURES FOR THE BACKEND

R&S®AREG8-81S/D MMW FRONTEND

UNIQUE FEATURES FOR THE AREG FRONTEND

Multiple objects with the same direction and independent RCS, range and doppler

SNR performance RCS accuracy

Common RX/TX antenna and integrated circulator

Suitable for MIMO Radars

 $((\Omega))$

High instantaneous bandwidth

Scalable solution

 $\rightarrow \bullet \leftarrow$

Short artificial object distances

Precise and repeatable

Suitable for EMC environments

R&S®AREG800A SCALABILITY, FLEXIBILITY AND MODULARITY GROWS WITH YOUR NEEDS

R&S®AREG800A SCALABILITY, FLEXIBILITY AND MODULARITY MODULAR CONCEPT

- The Digital Board (DB), the IF Switching Board (SB) and the optional Analog Stepped Delay Line Board (ASDL) are forming the smallest backend module
- A module has one (for 5GHz bandwidth) or two (for 2GHz bandwidth) IF paths, each with individual A/D and D/A conversion
 Hybrid Concept:

Digital Concept

Range: <17 m to 3000 m

Range: <4 m to 3000 m

18 Rohde & Schwarz

R&S®AREG800A ALLOWS EXTREMELY CLOSE OBJECT DISTANCE FOR FMCW RADARS

FULL DIGITAL IMPLEMENTATION. HYBRID OBJECT GENERATION IS STILL POSSIBLE

- Up to 4 channels with up to 8 targets per channel
- Minimum distance >= air gap value of the radar under test
- Example below with a Tier 2 DUT

19 Rohde & Schwarz

Use less channels in the R&S®AREG800A than in the

R&S®QAT100 and control the whole FOV of the frontend

Operation Setup	Bandwidth Config	Realtime Control Network	System Control Network		×
Mode	Sta	atic		Genera	I
Use Switchir	ng Unit			Setting	S
				Object Marker	
				Multi Instr.	
		Apply	Øok		

Elevation Angle Support

R&S®AREG800A

Elevation angle simulation capability

Improved mmW TRX FE Antenna Characterization

Frontend

Sensor/DUT

Channel

Channel

X

Config

TRX

ID = T1

QATID = Q1

Increase the accuracy of your measurement

Improved calculations for overview geometrical distance-angle

Define a digital twin of your physical setup and test more than 1 radar at the same time

Date / Time				×
Date [YYYY-MM-DD]	ø 2023-05-10	Time [hh:mr	n:ss]	ø 15:45:32
Time Zone	Time Protocol			
Time Proto		None	_	
		NTP	_	
		gPTP		

System time synchronization using the

generic precision time protocol

Adjustable speed of light

Units	×
Range Unit m	Doppler Format Doppler Speed
RCS Unit	Speed Unit km/h
Horizontal Angle Unit deg	Shift Unit Hz
Keep Constant Attenuation	Speed of Light 299 792 45 <mark>8</mark> m/s
	Min = 200 000 000 m/s m/s Max = 300 000 000 m/s km/h mph ::::::::::::::::::::::::::::::::::::

Fit the radar sensor design and increase

the accuracy of your measurement

Command output signal to trigger external devices

Increase the capability of your measurement setup in HiL mode

R&S®AREG800A IS HARMONIZED WITH THE FRONTENDS SIGNAL DISTRIBUTION OVERVIEW

#1

#2

#8

A – One QAT100 and one AREG800A For simulation of dense scenarios

B – Multiple QAT100s and one AREG800A For covering wide Field-of-Views

Up to 8 objects

C – mmW Frontends and AREG800A For performance test cases

Up to 32 objects

AGENDA

- Automotive radar technology and market update
- QAT100 Electronically steerable antenna array
- AREG800A advanced automotive radar echo generator
- Applications and solutions
- Automotive radar testing product portfolio
- Summary and learnings

R&S®AREG800A AUTOMOTIVE RADAR ECHO GENERATOR APPLICATIONS AND SOLUTIONS – ALL IN ONE FOR AUTOMOTIVE RADAR TESTING

RADAR MODULE PRODUCTION TESTER FOR TIER 1

PARTNERSHIP WITH NOFFZ TECHNOLOGIES

- Generate echoes with defined Doppler, RCS and Range
- Perform radar sensor calibration
- Future-proof CATR reflector technology for growing antenna apertures
- Seamless CATR production tester solution for developing radar in ATS1500C
- Combine CATR and AREG ensures best quiet zone

AUTOMOTIVE RADAR VALIDATION IN EMC ENVIRONMENTS AREG800A AND AREG MMW FRONTENDS ARE SUITABLE FOR TESTING RADARS IN COMPREHENSIVE AND DYNAMIC EMC ENVIRONMENTS

- Testing of radar operation under EMC stress
- Simulation of driving scenarios using R&S®AREG800A

MEASURE THE SENSOR'S TRANSMITTED POWER AND EIRP

COMPLY TO THE RADIO EQUIPMENT DIRECTIVE AND EXPLOIT THE MAXIMUM EIRP

R&S®ATS1500C

Rohde & Schwarz

- Connect a power sensor with upper frequency limit of 6 GHz
- Receive path from frontend to IF output
- Read the measured EIRP of the radar sensor directly on the GUI of the AREG

HIGH SENSITIVITY SIGNAL ANALYSIS MEASUREMENTS COMPREHENSIVE RADAR SIGNAL ANALYSIS

Measuring frequency linearity, length, long-

term stability and power of chirp to improve accuracy and fulfill regulatory requirements

Measuring phase noise to increase

•

sensitivity

AUTOMOTIVE RADAR CONFORMANCE TESTING TEST THE RADAR INTERFERENCE MITIGATION ALGORITHM PERFORMANCE

-000

Strong interferer (from nearby radars) Mid range interference

Long range interference Weak interferer (from distant radars)

Interfered radar Reflected signal

- "IMIKO Radar" Research Project (11/2018 10/2021) investigated and minimized radar interference
- · Test robustness of radar sensors against interferers for all automotive radar bands
- · All-in-one test solution with highest reliability and repeatability
- Cost efficient as a 6GHz signal source is sufficient for interferer simulation
- Synchronization of interfering signal with radar sensor is possible
- Simulate advanced interference scenarios, including sophisticated waveforms such as FMCW, PMCW, OFDM

OBJECT SIMULATION FOR HIL AND VIL TEST SYSTEMS

- New radar sensors based on SoCs require over-the-air stimulated black box testing
- NCAP will require increased testing of radars not only on the road and proving grounds, but also on the rig (vehicle-in-the-loop ViL) and in the lab (hardware-in-the loop HiL)

- Over-the-air stimulation of radar sensors for component and integration HiL testing
- Electrical simulation of lateral moving targets
- Simulation of longitudinal moving targets also in very low distance

AREG800A AND QAT100 FOR SCENARIO TESTING

STANDARD CONFIGURATIONS

Configuration	Targets	FOV *	Typical Use Cases
Entry	1	39°	Test of front radars in scenarios like Automatic Emergency Braking, Adaptive Cruise Control,
Basic	up to 2	39°	Test of front radars in scenarios like highway ALKS, country road,
Medium	up to 4	39°	Test of front radars in scenarios like highway ALKS, country road,
Advanced	up to 6	117°	Test of front and corner radars in scenarios like city thoroughfare, highway construction sites,
Complex	up to 8	117°	Test of front and corner radars in scenarios like urban intersections, Highway Construction sites,

EXEMPLARY DRIVING SCENARIOS

BASIC INSTRUMENT CONFIGURATIONS

Application:

- Enables selected NCAP, AEB and ACC scenarios
- Simulation of targets moving in azimuth, range, radial velocity and target size (RCS)
- Stimulation of a single radar sensor
- Test of front radars in scenarios like Automatic Emergency Braking, Adaptive Cruise Control, ...
- Up to 1 target
- 39° Field-of-View @ 50cm airgap

Frontend	#	Backend	#	Switch	#
QAT100	1	AREG800A	1	OSP220	-
B21 (MIMO)	1	B9 (Digital)	1	B128.3	-
B5 (ASDL)	-	K570 (2 nd IF)	-		
		B63 (ASDL)	1		
		K814	1		

EXEMPLARY DRIVING SCENARIOS

ADVANCED INSTRUMENT CONFIGURATIONS

Application:

- Enables selected NCAP, AEB and ACC scenarios
- Simulation of targets moving in azimuth, range, radial velocity and target size (RCS)
- Stimulation of multiple radar sensors
- Test of front and corner radars in scenarios like urban intersections, Highway Construction sites, ...
- Up to 8 targets
- 117° Field-of-View @ 50cm airgap

Frontend	#	Backend	#	Switch	#
QAT100	3	AREG800A	1	OSP220	2
B21 (MIMO)	3	B9 (Digital)	4	B128.3	4
B5 (ASDL)	-	K570 (2 nd IF)	4		
		B63 (ASDL)	-		
		K814	4		

HARDWARE-IN-THE-LOOP COMPONENT TEST PARTNERSHIP WITH VECTOR

Closed-loop radar module component validation using realistic road scenarios or artificial test cases

CANoe for test automation and restbus simulation via CAN / Ethernet in real-time

Environment simulation via DYNA4 (optional)

HARDWARE-IN-THE-LOOP INTEGRATION TEST PARTNERSHIP WITH IPG

Closed-loop integration test / validation using realistic

road scenarios or artificial test cases

Test automation via

TestManager (IPG) or ECU-Test (TraceTronic) or

EXAM (MicroNova)

Environment simulation via CarMaker (IPG)

VEHICLE-IN-THE-LOOP VALIDATION

PARTNERSHIP WITH AVL

Closed-loop vehicle validation using realistic road scenarios or artificial test cases

Test automation via PUMA

Environment simulation via Model.CONNECT using various tools using e.g. VTD, CarMaker, CarSim

R&S AUTOMOTIVE RADAR TEST SYSTEM R&S®QAT100 + R&S®AREG800A

Azimuth and elevation simulation without mechanical movement & immune to vibration

Extremely short distances precise and repeatable

4GHz instantaneous bandwidth across scalable FOV

Multiple independent dynamic objects

HiL interface via Open Simulation Interface

Performance optimized system

AGENDA

- Automotive radar technology and market update
- QAT100 Electronically steerable antenna array
- AREG800A advanced automotive radar echo generator
- Applications and solutions
- Automotive radar testing product portfolio
- Summary and learnings

RADAR BASED AUTONOMOUS DRIVING COMPREHENSIVE TEST AND MEASUREMENT PORTFOLIO FROM R&S

AGENDA

- Automotive radar technology and market update
- QAT100 Electronically steerable antenna array
- AREG800A advanced automotive radar echo generator
- Applications and solutions
- Automotive radar testing product portfolio
- Summary and learnings

SUMMARY AND LEARNINGS

- Realization of higher levels of ADAS is driving up number and complexity of automotive radars
 - Higher bandwidth, complex modulation, MIMO, virtual aperture
- 5/6th generation radar sensors enter market (trend to single chip CMOS, 5GHz bandwidth) with more complex modulation
- Need for complex moving object scenarios to be emulated in a lab environment is increasing
- Very short distance object simulation required during radar sensor R&D and validation addressed with the R&S[®]AREG800
- Future increased testing requirements at functional and ADAS application level a perfect fit for the very powerful and scalable R&S Radar Test System

THANK YOU! Find out more: www.rohde-schwarz.com/automotive/radar