Fundamentals webinar series

OSCILLOSCOPE FUNDAMENTALS

Noha Ibrahim, Product Manager Oscilloscopes Le Bas Nicholas, Product Specialist & Application Engineer Oscilloscopes

ROHDE&SCHWARZ

Make ideas real

CONTENT

- Oscilloscope Basic Operation
- Oscilloscope Key Specifications
 - Bandwidth
 - Acquisition rate and blind time
 - Memory
 - Trigger

OSCILLOSCOPE BASIC OPERATION

What is an oscilloscope?

Primarily used to measure and display voltage vs. time

- Many additional functions:
 - Automatic measurements
 - Serial bus analysis
 - Mixed signal analysis
 - Frequency domain analysis

Basic oscilloscope operation

Basic oscilloscope operation involves four "systems":

Vertical system

- Scales and positions the waveform vertically
- Horizontal system

About the horizontal system

Waveform display

Sample rate

About sampling

- The horizontal system digitizes the input signal at a given sample rate (samples/second)
- ► The higher the sample rate:
 - The greater the resolution / detail of the displayed waveform
 - The greater the probability of catching infrequent events
 - The greater the storage requirements (larger memory depth)

Sample rate recommendations

- ► Nyquist rule: sample at twice the signal's highest frequency to avoid aliasing
- ► In most cases, it's safe to let the scope choose the sample rate

input signal

DEMO: EFFECTS OF INSUFFICIENT SAMPLE RATE

Basic oscilloscope operation

Basic oscilloscope operation involves four "systems":

- Vertical system
 - Scales and positions the waveform vertically

Horizontal system

- Scales and positions the waveform horizontally
- Determines the sampling rate

Trigger system

- Starts acquisition for single-shot / repetitive waveforms

Display system

- Provides tools for analyzing / measuring results

10 Rohde & Schwarz

DEMO: DISPLAY SYSTEM

AGENDA

- ► Oscilloscope Basic Operation
- Oscilloscope Key Specifications
 - Bandwidth
 - Acquisition and blind time
 - Memory
 - Trigger

BANDWIDTH

Defining "Bandwidth"

 Frequency at which the measured amplitude of a sinusoidal input signal is attenuated by 3dB (~29.3%)

$$-3 \ dB = 20 \log_{10} \frac{V_{out}}{V_{in}}$$

- Fundamental oscilloscope specification
 - Specified in units of Hz
 - Typically ~100 MHz to GHz

How much scope bandwidth is needed? (analog signals)

- ► Required scope bandwidth depends on test signals frequency components
- ► For "analog" applications (no steep edges, no sharp transitions)
 - Bandwidth = **3x** the highest sine wave frequency is sufficient
- ► 3x rule usually also applies for low speed serial decodes (UART, SPI, I2C, etc.)

How much scope bandwidth is needed? (digital signals)

- "Digital" = a square or rectangular shape
 - Typically (very) high speed / steep edges
 - Extremely common in modern applications
- ► Digital "square" wave is composed of odd sine wave harmonics
 - According to signal theory, a rectangular (digital) signal can be expressed as an infinite sum of sinusoidal signals

$$f(t) = \frac{4h}{\pi} \left(\sin(\omega t) + \frac{1}{3}\sin(3\omega t) + \frac{1}{5}\sin(5\omega t) + \cdots \right) = \frac{4h}{\pi} \sum_{n=1}^{\infty} \frac{\sin\{(2n-1)\omega t\}}{2n-1}$$

How much scope bandwidth is needed? (digital signals)

- More harmonics measured
- \rightarrow steeper edges of the waveform
- For digital applications, rule of thumb: measure 3rd and 5th harmonics

<u>Rule of thumb:</u> $BW_{Scope} = 3-5x f_{clk}$ of Test Signal

- Higher order harmonics are also important for signals with very fast rise times
- In some scopes, the amplitude of higher order harmonics may be below the noise floor

DEMO: CONSEQUENCES OF INSUFFICIENT BANDWIDTH

Using rise time to determine required bandwidth

- For digital signals, rise time (t_r) is another way to calculate required BW
- Rise time is a function of higher frequency signal components (harmonics)
- Higher bandwidth is needed to accurately measure faster rise times (sharper edges)

Calculating bandwidth from rise time

 Bandwidth can be calculated by multiplying the reciprocal of rise time (t_r) by a scaling factor

$$BW = \frac{factor}{t_r}$$

System bandwidth

- A measurement system consists of
 - Oscilloscope
 - Probes (cables / fixtures)
- Each has its own bandwidth
- The system bandwidth is a function of these two bandwidths

$$BW_{system} = \frac{1}{\sqrt{\left(\frac{1}{BW_{probe}}\right)^2 + \left(\frac{1}{BW_{scope}}\right)^2}}$$

ACQUISITION RATE AND BLIND TIME

About acquisition rate and blind time

- Acquisition rate: also called "update rate," "capture rate," etc.
 - How quickly can the oscilloscope can trigger, process, and display sequential waveforms
 - Specified in units of waveforms per second (higher is better)
- Blind time
 - the period of time during which the scope is not acquiring new samples and therefore blind to any waveform data.
- Blind time can be very high (> 99%) in some oscilloscopes

How a higher acquisition rate reduces test time?

24 Rohde & Schwarz

DEMO: IMPROVED SIGNAL VISIBILITY DEMO

DEMO: CAPTURING RARE EVENTS

Usability / responsiveness

- Waveform processing takes priority over user interface
 - →Scope only updates display and/or responds to user input at the end of each acquisition
- Faster acquisition make a scope more responsive
- Improves overall user experience
 - Decreases user frustration and probability of user error
 - Decreases overall test time

Higher statistical confidence

Scopes are often used to generate statistical data

- Each acquisition is a "sample" of the input signal
- ► With increasing acquisition count:
 - Greater confidence that the measured statistics are closer to the actual values
- Higher acquisition rates provide more "samples" (waveforms) per unit time
 - Can greatly reduce test time needed to obtain the desired statistical confidence

CONTENT

- Oscilloscope Basic Operation
- Oscilloscope Key Specifications
 - Bandwidth
 - Acquisition rate and blind time
 - Memory
 - Trigger

ACQUISITION MEMORY

Record length

Sample Rate x Acquisition Time = Record Length

 $f_{sample} \ x \ t_{meas} = n_{samples} \quad \text{with} \quad t_{meas} = [Time \ scale] \ x \ [\# \ of \ Divisions]$ e.g. Sample Rate = 10 GSa/s: $10 \ \frac{GSa}{s} \times 100 \ \frac{ns}{div} \times 10 \ \text{div} = 10 \ \text{kSa}$ $10 \ \frac{GSa}{s} \times 100 \ \frac{\mu s}{div} \times 10 \ \text{div} = 10 \ \text{MSa}$ 31 Rohde & Schwarz Oscilloscope Fundamentals

Value of deep memory

► Capture longer time

 $Time \ captured = \frac{Memory}{(Sample \ rate)}$

- Also allows you to zoom in on the signal without losing detail

Retain Needed Sample Rate When More Time is captured

 $(Sample \ rate) = \frac{(Time \ captured)}{Memory}$

More reliable measurement

Important parameters of oscilloscopes

DEMO: DEEP MEMORY

Segmented memory

- Segmented memory mode: a standard oscilloscope function
- ► Acquistion memory of an oscilloscope is sliced into a certain number of segments.
- ► Each segment stores one acquistion of defined length.

Segmented memory

- ► More efficient memory utilization for applications where a single shot acquisition is sufficient
- ► With deep memory:
 - More segments
 - More sample rate
 - More time with each segment

Tradition single-shot Acquisition Total Acquisition time = memory depth / sample rate

Segmented Memory Acquisition

Segment acquisition time = memory depth / # of segments

Trade-offs of Using More memory

- ► As more memory memory is utilized, the oscilloscope's processing requirement increases
- → Overall scope operation slows down
- → Lower update rate
- → Dead time between acquisitions increases
- A high performance (ASIC performance) can help to ensure that the scope stays responsive even with deep memory

Summary: Acquisition Memory

- Deep memory offers insurance for both current and future application test and debug needs
- ► Greater flexibility...
 - ...in capturing for longer periods of time
 - ...retaining higher sample rates with slower time bases

About triggering

- ► Digital storage oscilloscopes digitize input signals and convert them into sample values
- ► This acquisition process is normally started when a **trigger** event occurs
- Most often used to stabilize a repeating waveform on the screen
 - Acquisition restarts with each trigger
- Also used for:
 - Single shot captures
 - Segmented memory

About Trigger Sensitivity

- The required amplitude of a signal (measured in vertical divisions) for the oscilloscope to ensure the signal will be detected as a trigger event.
- ► 2 types of trigger systems:
 - <u>Analogue</u> trigger system, Typically requiring 1-2 divisions for a trigger event
 - Digital trigger system,

Sensitivity of 0.1 divisions or even less

DIGITAL OSCILLOSCOPE ANALOGUE TRIGGER UNIT

DIGITAL OSCILLOSCOPE DIGITAL TRIGGER UNIT

Trigger types

DEMO OF TRIGGER TYPES

Additional trigger parameters

46 Rohde & Schwarz

Trigger holdoff

- ► Determines conditions that must occur **before** next trigger event will be recognized
- ▶ Primarily used to trigger on waveforms with multiple trigger locations in a single "cycle"
- Most often defined as a minimum time between trigger events
 - Other criteria can be used (e.g. number of trigger events to skip)

Trigger hysteresis

- Available for many trigger types
- Reduces false triggering on noisy signals
 - More stable trigger
- Can be represented as a region or box
 - Defined by trigger and hysteresis levels
- Signal must "cross the whole box" to be considered a valid trigger event
- Width of the hysteresis region can be set automatically or configured as an absolute or relative range

Trigger filtering

- The trigger signal can also be filtered to reduce unwanted triggering
- ► Two types of trigger signal filters:
 - Low-pass (RF reject)
 - High-pass (LF reject)
- RF rejection filter typically has a configurable bandwidth / cut-off frequency
 - Can be adjusted to remove high-frequency noise on a signal
- This filtering is only performed on the trigger signal, not on the acquired waveform

Oscilloscope Trigger: Summary

- ► Triggering is a fundamental oscilloscope system
 - Defines the start of an acquisition
- Many different trigger types available on an Oscilloscope
 - Common: edge, width, timeout, etc.
 - Less common: setup and hold, patterns, etc.
- External trigger sources can also be used
- Configuring triggers usually involves:
 - Defining amplitude thresholds
 - Defining time thresholds
- Additional trigger parameters include holdoff, hysteresis, and filtering

Oscilloscope summary (cheat sheet)

- ► 4 Fundamental systems:
 - Vertical, use it all (ADC resolution)
 - Horizontal, "Timebase" (Memory/Record length)
 - Trigger, Stabilizing the waveform
 - Display, gives the tools for analysis
- ► Sample rate
 - Nyquist Theorem,

2x highest frequency = correct sampling (avoid aliasing)

- Bandwidth (BW), 3dB cut-off frequency Rules of thumb:
 - Sinusoids, up to or greater than defined BW
 - Digital signals, 2 methods:
 - 3x 5x the highest frequency
 - ~0.5/Rise time = BW
 - **System bandwidth** = A function of both <u>Probe</u> and <u>Oscilloscope</u>

- Waveform acquisition rate, the speed the Oscilloscope can trigger, process and display an acquisition
- **Blind time**, time missed between each acquisition
 - Function of Acquisition rate, Faster = Less blind time
 - High statistical confidence in measurements
- Acquisition memory, amount of data points defined in 1 acquisition
 - Sample rate x Timebase = Record length
 - Segmented memory used to focus on desired waveforms separated by areas of no interest
- ► Trigger parameters:
 - Digital High sensitivity, Analogue ~1-2 divisions
 - Types: Edge, Glitch, Runt, Window etc...
 - Parameters: Hold-off, Hysteresis, Filtering (Use parameters and types to optimise your Acquisitions stability)

THANK YOU

Find out more https://www.rohde-schwarz.com/oscilloscopes

ROHDE&SCHWARZ

Make ideas real

