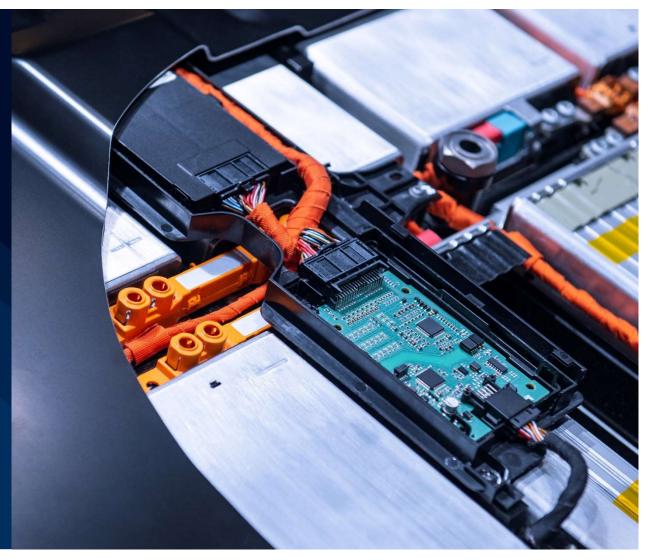
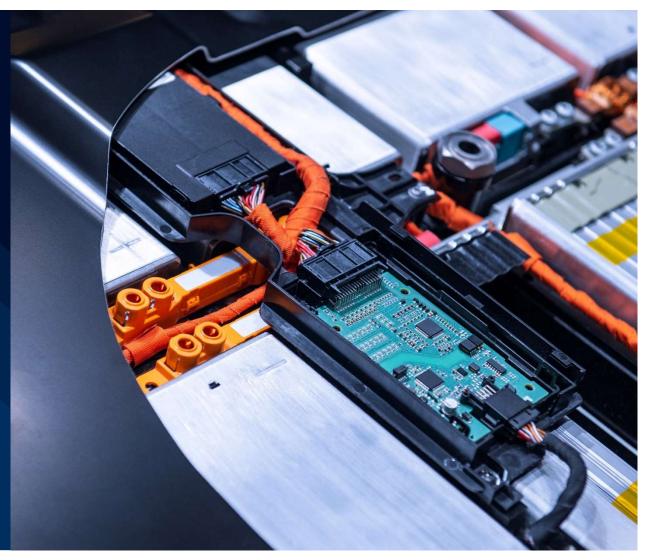
TRACTION INVERTER TESTING, VERIFICATION AND DEBUGGING FOR OPTIMIZED EFFICIENCY

Jithu Abraham Product Manager Rohde & Schwarz Dr Dominik Berndt Technical Sales Manager Zurich Instruments Jeremy Carpenter Technology Marketing Expert



ROHDE&SCHWARZ

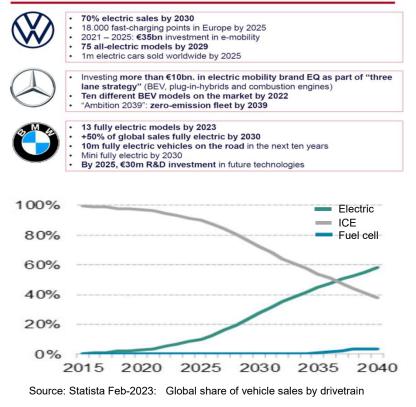
Make ideas real


CONTENT

- Electric drivetrain technology & market trends
- Traction inverter development challenges
- ► Test applications & solutions
 - Oscilloscopes
 - Power Supplies
 - Impedance Analyzers
- Summary and learnings

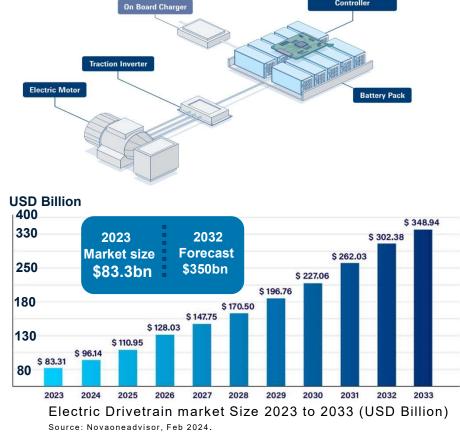
CONTENT

- Electric drivetrain technology & market trends
- Traction inverter development challenges
- ► Test applications & solutions
 - Oscilloscopes
 - Power Supplies
 - Impedance Analyzers
- Summary and learnings



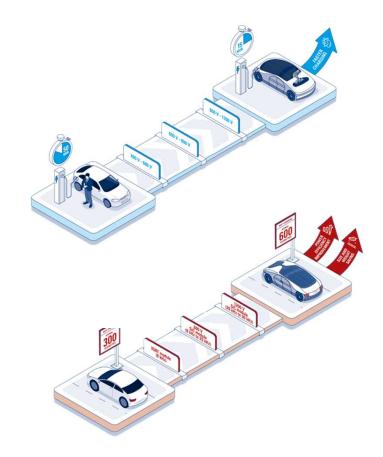
ELECTRIC VEHICLE MARKET TRENDS

- By 2035 most industrial countries will ban the sales of new combustion engine vehicles.
- Further improvement of electric vehicle charging time, driving range and reduction of price and weight is required for mass adoption by consumers.
- Car manufacturers heavily invest in new technologies and models.


4 Rohde & Schwarz July 2024 Electric drivetrain testing

OEMs - Overview

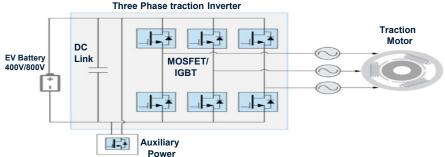
ELECTRIC DRIVETRAIN MARKET TRENDS


- Electric drivetrain market expected to grow from 2023-2033 at CAGR of 15.4%
- New battery technologies under development
- Electric drivetrain suppliers and OEMs focus on performance, cost, space, safety and efficiency.

Battery Management Controller

TECHNOLOGY TRENDS

- Increased battery voltages: Battery voltages go up to 800V to achieve faster charging times, reduce power loss and weight
- Wide bandgap Semiconductor technologies such as Gallium Nitride (GaN) & Silicon Carbide (SiC) offer high efficiency, increase power density & higher switching frequencies.
- Wireless battery management: to eliminate the wiring structure and thereby reduce weight and cost, as well as improve reliability, scalability, and serviceability.

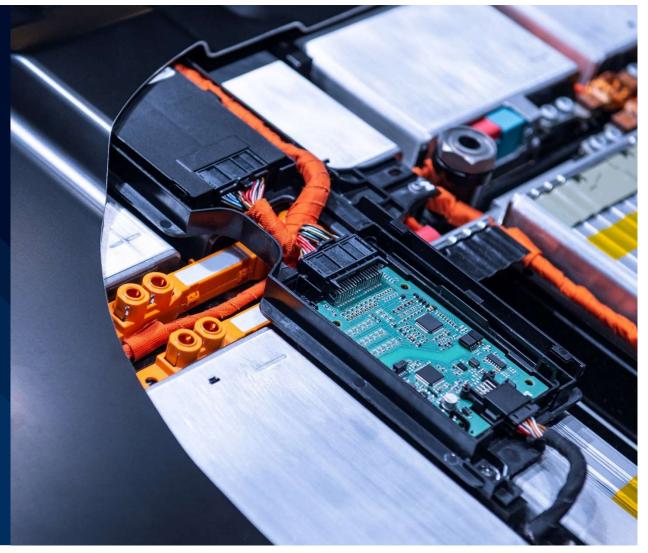

ELECTRIC VEHICLE TRACTION INVERTER

Function: The traction converts the DC voltage from EV battery into the AC current to drive the traction motor

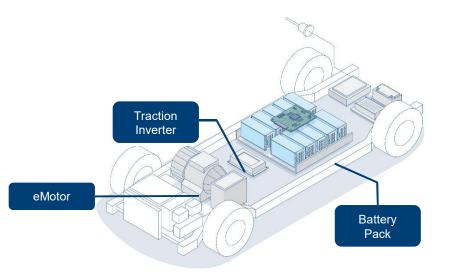
Technology: The circuit typically consists of MOSFETs or IGBTs & control circuitry that switch the DC Power into AC Power

Power Range: The traction inverter delivers the high-power levels from 20kW to ~ 400kW

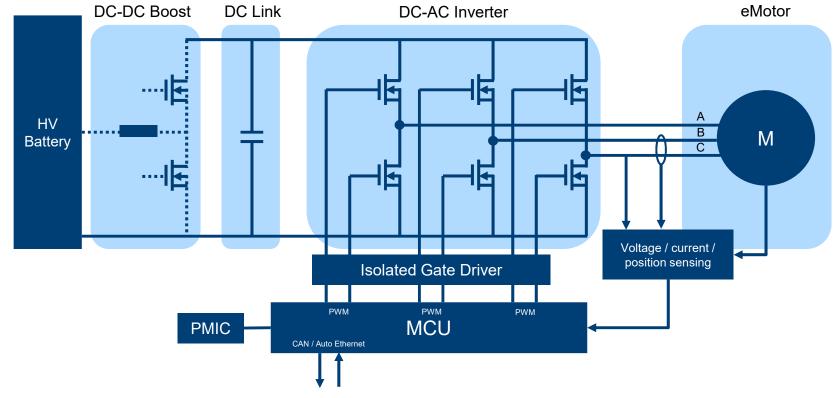
Trends: Increased integration, reduced size, higher power density & improved efficiency.



Traction Inverter market Size 2023 to 2032 (USD Billion) Source: precedenceresearch, Apr 2023.


CONTENT

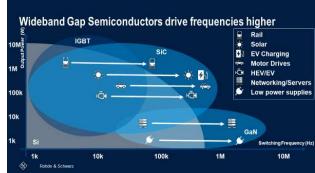
- Electric drivetrain technology & market trends
- Traction inverter development challenges
- ► Test applications & solutions
 - Oscilloscopes
 - Power Supplies
 - Impedance Analyzers
- Summary and learnings

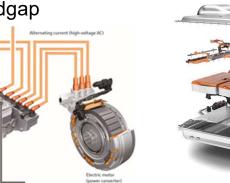

TRACTION INVERTER - INTRODUCTION

- ► The term 'Traction' is the act of pulling or drawing something over a surface
- Responsible for accurately, safely and efficiently controlling the e-motor for improving driving range, responsiveness, smoothness, traction and handling
- ► Has multiple roles:
 - Traction
 - Forward/backward motion
 - Eco/Sports mode
 - Hill hold
 - Powertrain
 - Regenerative braking

9 Rohde & Schwarz

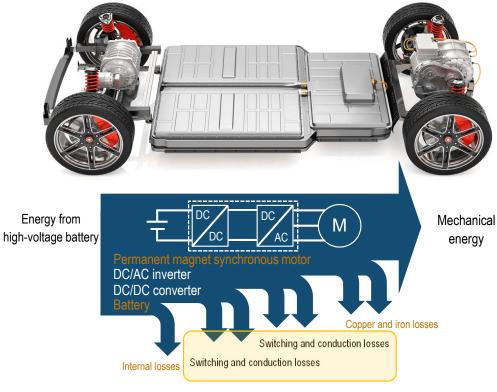
TRACTION INVERTER SCHEMATIC



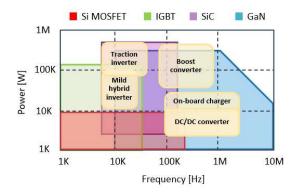

10 Rohde & Schwarz

INVERTER DESIGN CHALLENGES

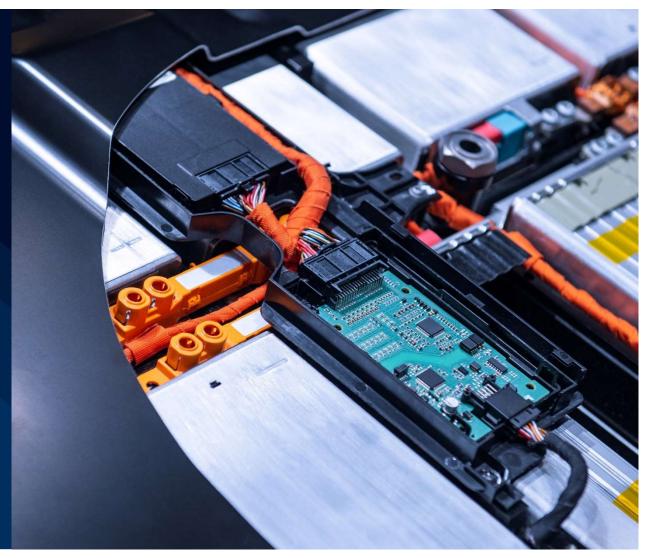
- Minimize switching losses and maximize thermal efficiency with proper design of inverter/converter electronic
- ► Verify stability under different loads & environmental conditions
- Ensure maximum efficiency at higher switching frequencies and multiple output voltages
- ► Ensure the timings of switches to verify control algorithms
- Achieve EMI compliance when using new wide-bandgap materials
 - High switching frequencies
 - Steep rising edges



FURTHER INVERTER DESIGN CHALLENGES


The deeper the dive into the system, the more challenging it gets

12 Rohde & Schwarz


Electric drivetrain testing

- Switching frequencies of even few 100 kHz
- ▶ Up to 800 V at up to 500 kW rated power
- ► Transistor switch-on/off operations within few 100 ns
- Current oscillations of transistor switching of few MHz
- ▶ Up to 6-phase AC output and 2-stage topology trend
- ► Output ripple & noise in up to few MHz range

CONTENT

- Electric drivetrain technology & market trends
- Traction inverter development challenges
- Test applications & solutions
 - Oscilloscopes
 - Power Supplies
 - Impedance Analyzers
- Summary and learnings

TRACTION INVERTER TEST SOLUTIONS

DC AC Traction Inverter

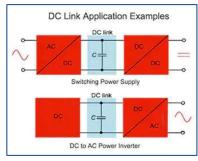
- Switching analysis
- ► PWM signal analysis
- Stability verification

Power Modules

Device characterization

DC Link Capacitor

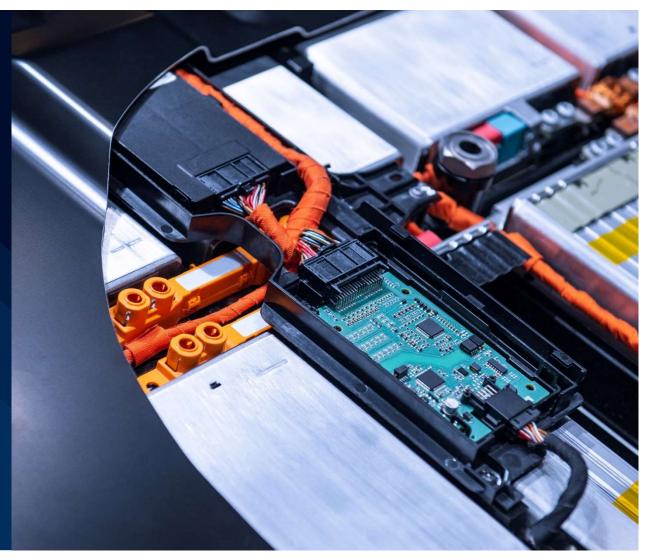
► ESR + ESL measurement


DC AC Traction Inverter

DC Link Capacitor

R&S Power Supply R&S

R&S Oscilloscope


Double Pulse Tester by PE Systems

Impedance Analyzer by Zurich Instruments

CONTENT

- Electric drivetrain technology & market trends
- Traction inverter development challenges
- ► Test applications & solutions
 - Oscilloscopes
 - Power Supplies
 - Impedance Analyzers
- Summary and learnings

TECHNOLOGY DEVELOPMENTS LEAD TO MEASUREMENTS CHALLENGES

Increased voltage and current measurement range

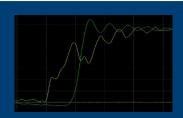
- Accuracy across wide dynamic range
- Appropriate probes and current sensors

High vertical resolution

More probes selections Rohde & Schwarz

High-frequency noise and ripple analysis

- Small ripple voltages in the presence of large DC voltages
- System noise vs measurementinduced noise


High sensitivity Fast acquisitions

Complex Inverter Phase control algorithms

- Timing relationships between multiple phase outputs and switch on/off
- Complex feedback control

More channels

Deep Memory

Transient response characterization

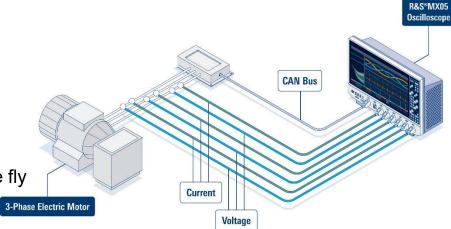
High-speed transient events without aliasing

 Correlating transient events across different voltage domains (DPT)

High CMRR

Specialize solution

ELECTRIC DRIVETRAIN – DESIGN & TEST OSCILLOSCOPE AND PROBING SOLUTIONS



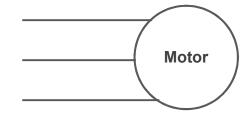
Rohde & Schwarz

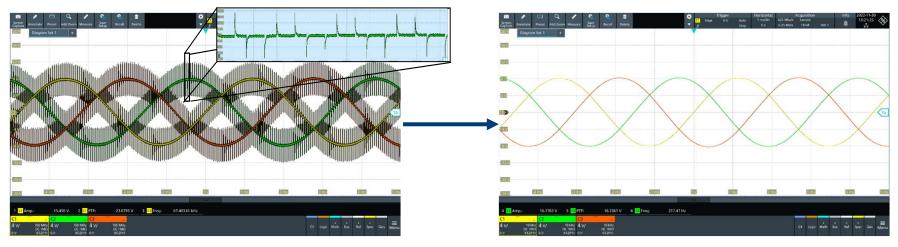
OSCILLOSCOPE APPROACH

More channels

- Observe 3-phase inverter output
- Switching behavior
- ► High-frequency analysis
 - PWM waveforms
 - Motor commutation signals
- Real-time analysis
 - Diagnose issues and make adjustments on the fly
- Ability to capture transients
 - Voltage spikes
 - Noise
- Ability to analyze individual components
 - Motor, Inverter, Power supply, Transistors...

ANALYSIS TOOLS


- Oscilloscopes include different automated measurements for power analysis:
 - Efficiency
 - Switching losses
 - Switching behavior
 - Power quality
 - Input harmonics
 - Inrush currents
- For high precision, dedicated power analysis tasks, a power analyzer is the preferred choice.



19 Rohde & Schwarz

ELECTRIC DRIVETRAIN ANALYZE MOTOR SIGNALS

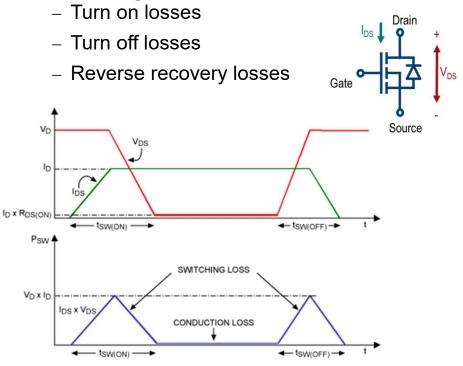
- The switching behavior of the inverter in a motor drive system can have significant impact on the motor.
- Negative effects in the performance: Reduced efficiency, increased temperature, acoustic noise, reduced torque and EMI.

20 Rohde & Schwarz July 2024 Electric drivetrain testing

ELECTRIC DRIVETRAIN SWITCHING BEHAVIOR

- Analyzing the switching behavior of an inverter in an electric vehicle is crucial for improving efficiency, reducing EMI noise, preventing damage and enhancing safety
- ► Voltage and current probes must be selected accordingly
- ► As a rule of thumb, it should be checked:
 - $\checkmark~V_{GS}$ and V_{DS}
 - ✓ Rise times and fall times (10/90 or 20/80)
 - ✓ Overshoot, ringing
 - ✓ General timing of high- and low-side switch (synchronous converter)
 - ✓ Robustness test
 - Relation between the three phases of the inverter
- 21 Rohde & Schwarz July 2024 Electric drivetrain testing

ELECTRIC DRIVETRAIN QUANTIFY LOSSES

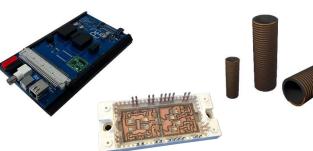

Semiconductors operation generate losses

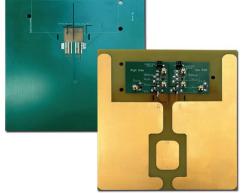
- Conduction losses
- Switching losses
- Conduction Losses occur when the transistor is in the on-state and is conducting current

► Switching losses can lead to various effects

- Reduced Efficiency
- Increased Temperature
- Voltage and Current stress
- EMI
- Design Complexity

Switching losses to be evaluated


ELECTRIC DRIVETRAIN MODULAR DOUBLE-PULSE TESTER


- ► \leq 2 kV and 3.6 kA
- ► -55°C to 250 °C
- Discretes and Power Modules
- ► Si, SiC and GaN
- ► ±20 V, < 90 A Flexible Gate Drivers
- < 30min from power on to measurement start</p>

Rohde & Schwarz

ELECTRIC DRIVETRAIN DOUBLE-PULSE TESTING SOLUTION

Paula I				Me		Ţ								(Vilamb	Hiteste	Contract Con		
		7	11.		-	1	-	14	11	1 11					100		-	100 ¹
000	111		1212				1	-		-	-	-	11	111 1		in the stress	NC.	82
	-	- 10	 	1							-	47 47 40 84 80	1111111	1111111111		1 = =	20-10-2	
0 =	14v 14v		111		10 1 10 1 10 1					•		11	111	81 61 61	i.	1		
Tradingues		_	_	_		_					has		-			122.2.0 descep		
And Sold And State		in labies												- 1				
		9	1								2+				122	in term		22
1:5		-	_				1	1							1			
12	Manur						E		7				_		25			
1	~	-		_	-		1.	1	-	-	-					(rat)		
17	1						扫		J"			-						
		THE						-	CTURN	i fant					-		Autor	
1000		-						1	- nell					-		-		_
							-											
							80											
															I			
							The second second											1
																		b
1														-		(Nor	>	D
			-											-		3	0	
									100100		- 14 - 14 - 14 - 14 - 14 - 14							
									100420									
								-			6							
		HAMMAN . H				6		•					-					
							-		1000		ĩ,		1.			•		
		Hannes H. Hannes H.					-		1000		ĩ,		1.					
							-		1000		ĩ,		1.					
		The sum of the second s					-		1000		ĩ,		1.					
		HI WHITE I A HITELE I					-				ĩ,		1.	(

Rohde & Schwarz

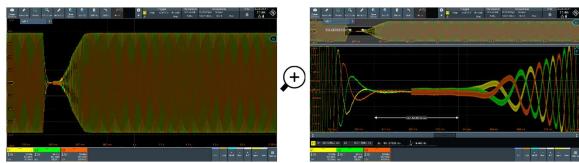
Software is the key

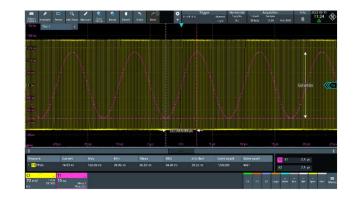
- Automated device tests
- Measurement across various temperature cycles
- Conflict manager for human error reduction
- ► Data analysis and management
- Uncertainty quantification and device modelling
- ► Innovative de-skew function

ELECTRIC DRIVETRAIN GATE DRIVER CHARACTERIZATION

- The Gate driver is responsible for controlling the switching of the semiconductor devices
- PWM signals are generated from the MCU using the space vector modulation (SVM) scheme.
- From the motor the voltage, current and position signals are sensed and fed back to the controller to modify the modulation of the inverter.
- Oscilloscopes with more channels
- Verify PWM Control Algorithm
- Debug of parasitic coupling from the switch node to the gate causing shoot-through conditions
- Power supplies to power and mimic the MCU

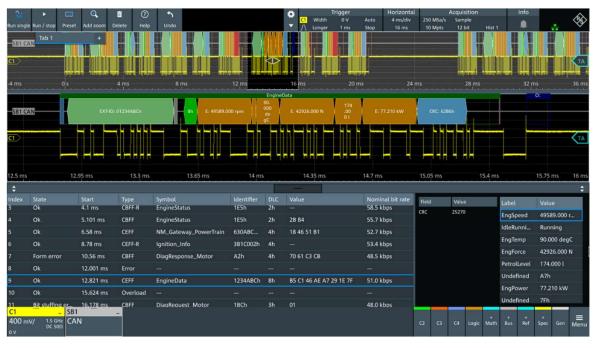
25 Rohde & Schwarz


ELECTRIC DRIVETRAIN ISOLATE FAULTS

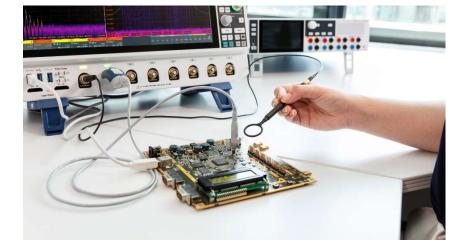

Measure voltage and current waveforms

- Identify anomalies
- Capture transients
 - Digital trigger capabilities
 - Diagnose faults
- Monitor signals
 - PWM
 - Feedback
 - Control

► Measure timing


 Timing issues occur if signals are not synchronized correctly

ELECTRIC DRIVETRAIN PROTOCOL ANALYSIS


- Supports CAN, CAN FD, CAN XL, LIN, Auto Ethernet, etc.
 - Motor control
 - BMS
 - Regenerative braking
 - Safety systems
- Hardware-based decoding ensures spotting and capturing errors on the bus
- Time-correlated decoding to the captured analog waveform
- Flexible display of decoded data
 - Color coding for each sections of the frame
 - Data can be displayed in ASCII, Hex or binary
- Powerful trigger capabilities to isolate specific ID, data or errors

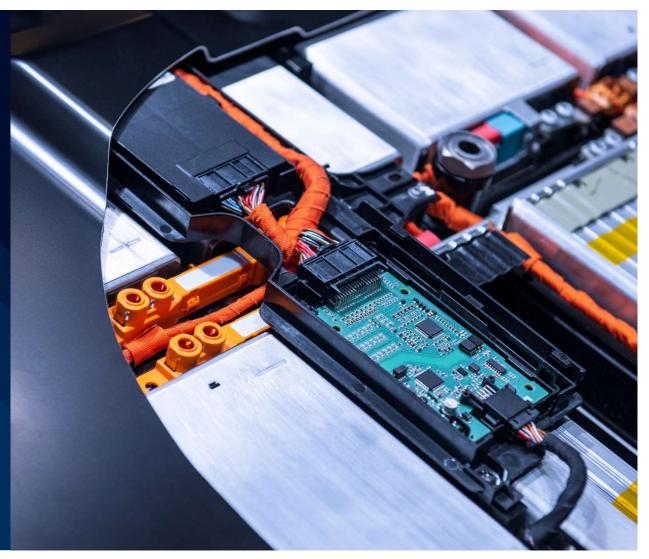
27 Rohde & Schwarz

ELECTRIC DRIVETRAIN EMI DEBUGGING

Unco Red	to Relp	Screen Geptura	Annotane	Preset	Q Add zoon	Measure	U Delete	Asc	 Rur / stop Run single 		•	Edge	Trigger 3 V	FreeRun Stop	Horizontal 400 nc/div 0 s	A S GSa/s 317.41 kpts	cquisition Sampie 12.bit	1 Hist 6552	info	1	\$
2.5 mV Tai 2 mV	b 1		1														Index	Frequency	51		
1.5 mV																	1	SS.39 kHz		3.2 d0µV	10.50
1 mV																	2	283.38 kH		9.74 dBµV	
500 µV																	1	381.47 kH		1.75 dBµV	
																TA	4	555.86 kH			θμ√
-500 µV		Contain and	de solition	trois -		-11012			وريقافه وخرجة	COLUMN DESIGN		2.012-0	CODE:			Contractory of					
-1 mV																					
-1.5 mV GS1 -2 mV																					
-2.5 mV	1.6 µs		-1.2 µs		-800 ns		-400 m	e	0 s	400 ns	800 ms		1.2 µs		1.6 µs	2 µ					
30 dBuV Peak, 1 65.395 kHz 3.204 dBµV 75 dBµV 10 dBµV 5 dBµV			Peak. 283.31 9.738	8 kHz	Peak 3 381.47 kl 1.754 dB	Hz 555.8	6 kHz 5 dBμV	L.N	man Arelthan	al dari seyalak	هممهعالم	i terre	فيقترفون		Threshold	0.2820 dBµV					
65 dBµV 610 dBµV 615 dBµV					1					Maderia (mari Maderia)						50000					
-20 σΒμV <mark>C1</mark> 500 μV/ ο v	_ S1 2 GH2 5 0 DC 5300 C1		- 10 dBull	00 kH2 4	400 1947	ECC KH			Harre Martin	HZ. A BARA	4100 0100	DAR	g LU.		64 G	66 67	(7 Lo	aic Math Bu	net .	a Spec Gen	Mena

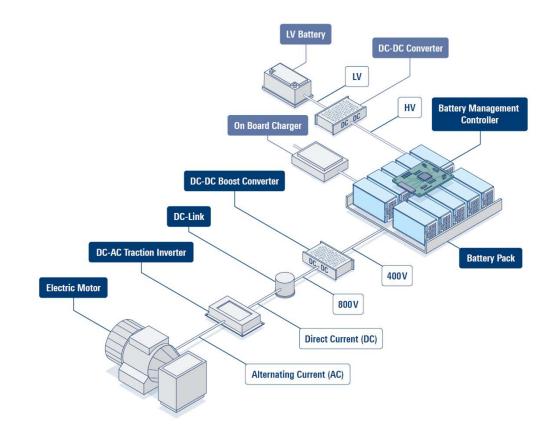
- ► Standard fast spectrum with 45k FFTs/second
- Support log-log scale and dBuV display of unit
- ► Peaklist, min/max-hold and intensity grading

28 Rohde & Schwarz


Electric drivetrain testing

EZ-17 Current clamps support 20 Hz to 245 MHz HZ-17 Near Field Probes support 30MHz to 3GHz HZ-16 Amplified extend HZ-17 down to 9kHz

CONTENT


- Electric drivetrain technology & market trends
- Traction inverter development challenges
- Test applications & solutions
 - Oscilloscopes
 - Power Supplies
 - Impedance Analyzers
- Summary and learnings

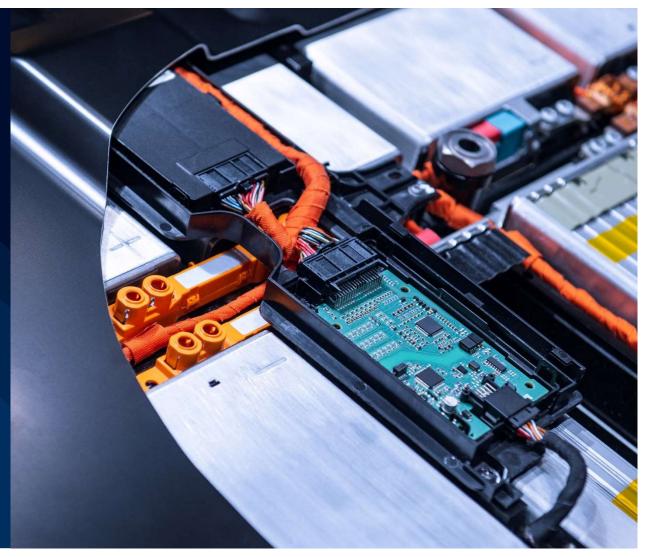
POWER SUPPLIES

Are needed to test the different blocks of the electric drivetrain

- On-board charger:
 - AC and DC bidirectional power supplies
- ► HV to LV DC-DC converter:
 - DC power supply and DC load
- Battery pack
 - DC bidirectional power supplies to emulate the battery cells in the BMS
- ► Traction inverter:
 - DC power supply
- Electric motor:
 - AC 3-phase power supply
- 30 Rohde & Schwarz

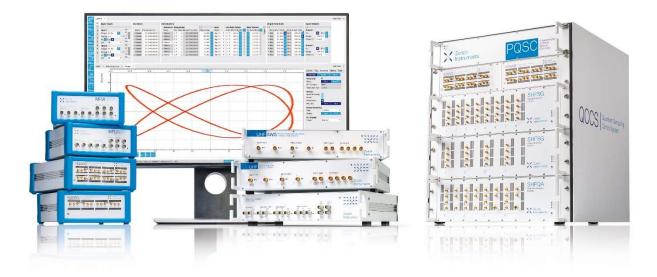
CONVERTER TESTING

- The DC-DC converters in the drivetrain are powered by the 400 V / 800 V battery pack.
- These converters must be tested under various conditions, which are challenging to emulate using a battery pack alone.
- Consequently, a dedicated power supply is required to conduct comprehensive tests on the converters within the electric drivetrain.



- The NGT series power supplies can be used for the higher power applications in the electric drivetrain
- ► Low voltage and current ripple
- A voltage of 400 V is achieved by connecting three units in series

31 Rohde & Schwarz


CONTENT

- Electric drivetrain technology & market trends
- Traction inverter development challenges
- Test applications & solutions
 - Oscilloscopes
 - Power Supplies
 - Impedance Analyzers
- Summary and learnings



ZURICH INSTRUMENTS – OUR MISSION

Provide the best-in-class dynamic-signal instruments for advance R&D labs Since 2021: Part of the Rohde & Schwarz family

PRECISE IMPEDANCE MEASUREMENTS IN AUTOMOTIVE

CHARACTERIZATION OF LOW-ESL/ESR DC-LINK CAPACITORS

What does a DC-link capacitor do?

- ► Balancing electrical storage device
- Reducing ripples and transients during switching

Why are ESR/ESL important parameters?

- Maximizing efficiency by reducing heat
- Reducing voltage spikes during switching

Who is interested in knowing these parameters?

- E-mobility manufactures have interest in integrating parts with lowest possible ESR and ESL
- Component manufactures need to make solid claims about ESR and ESL in specs sheet

THE MFIA IMPEDANCE ANALYZER

Innovative architecture of the MFIA enables

- ► Measurements in a broad impedance range from 1 mOhm to 1 TOhm
- ► Measurements in a broad frequency range from 1 mHz to 5 MHz
- ► Fast impedance measurements, fastest LCR mode available (10 µs at 1 MHz)

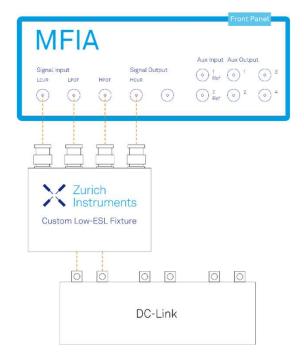
LabOne Instrument Control Software provides

- Time domain and frequency domain toolset; Sweeper, Plotter, DAQ, Scope and many more
- ► Advance control via API suite (C, MATLAB, LabVIEW, Python, .NET)

Accurate and precise over a wider range than most impedance analyzers

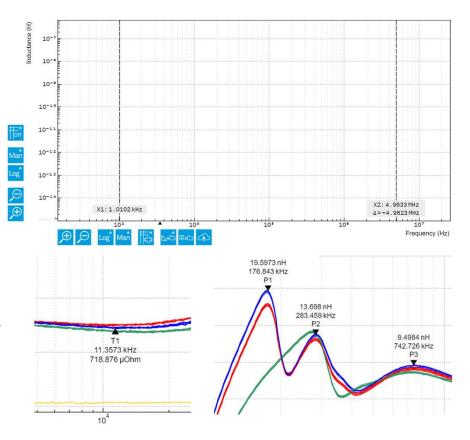
CHARACTERIZATION OF LOW-ESR/ESL DC-LINK CAPACITORS

Your challenges

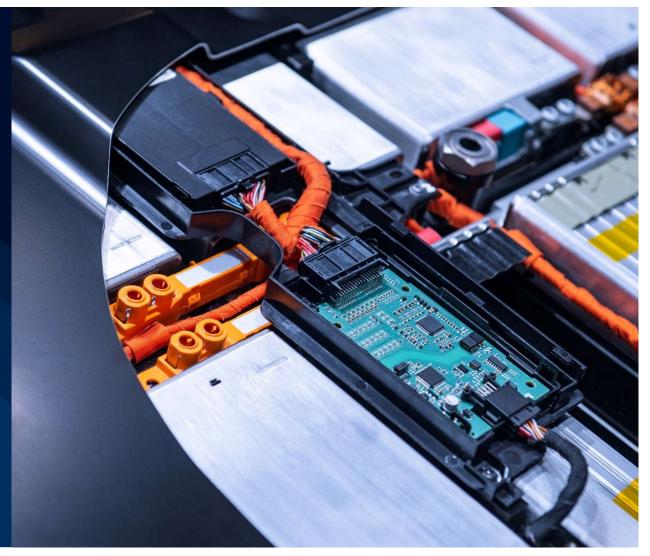

- Understanding ESR and ESL characteristics for the actual frequency of operation, not just the frequency specified in the specs sheet
- ► Having a demand for an instrumental setup with high reproducibility and repeatability
- ► Performing accurate low-Z measurements involving zero-reference plan for changing setups
- ► Requiring well-defined connections when measuring low inductances
- Precisely studying component aging effects

Our solution

- ▶ Measure ESR & ESL in the µOhm & nH range as well as other relevant parameters such as d or C
- ▶ Perform application-specific user compensations for accurate measurements
- Sweep f to measure ESR, ESL, d and C at frequencies relevant to your application
- ▶ Simultaneously display ESR, ESL, D and C using our Plotter and Sweeper tab


LIVE DEMO: CHARACTERIZATION OF DC-LINK CAPACITORS

- Impedance spectroscopy of application related parameters over 1 kHz to 5 MHz
- Perform short user-compensation with low measurement baseline for high accuracy
- Measure and record ESR/ESL as a function of frequency and time
- Employ mathematical tools (average, min/max, histogram) for statistical analysis
- Display multiple relevant parameters on the same chart in the Plotter or Sweeper tab
- Display multiple traces on the same chart to show high repeatability and reproducibility


YOUR BENEFITS

- Reduce risk of overheating and voltage spikes by confirming the ESR/ESL before design or assembly
- Study aging effects of your components
- Enhance your component product offering with reliable and credible ESR/ESL spec-sheet values over a frequency range, not just at fixed value
- Support the development of innovative DC-Link capacitors by measuring the ESR/ESL quickly and easily during the R&D stage
- Optimize your setup by integrating the MFIA into your test set-up thanks to well-developed API control
- Provide flexible impedance measurement modes for your R&D lab

CONTENT

- Electric drivetrain technology & market trends
- Traction inverter development challenges
- ► Test applications & solutions
 - Oscilloscopes
 - Power Supplies
 - Impedance Analyzers
- Summary and learnings

SUMMARY AND LEARNINGS

- The traction inverter fullfills a critical role in the electric drivetrain, influencing overall EV performance
- Rapid developments in inverter technology towards higher voltage, fast switching semiconductors & closer integration as OEMs seek to balance output against space, weight, cost & sustainability
- These translate to new measurement challenges and test equipment evolution. High performance analytics tools required
- Multi-channel, high-performance oscilloscopes & probes from R&S provide awareness of transients in real time as well as EMC, protocol, power efficiency and switching behavior
- Reduced risk for DC-Link / Bulk Capacitor overheating and voltage spikes by early validation with accurate impedance analyzers and LCR meters
- Holistic approach to testing enables marginal gains to be identified in development and debugging process to optimize traction inverter efficiency
- 41 Rohde & Schwarz

Find out more: www.rohde-schwarz.com/automotive

Automotive TEST IT. TRUST IT.