ELECTRONIC WARFARE STIMULUS ARCHITECTURAL OVERVIEW

Duncan d'Hemecourt Radar/EW Test Application Engineer

ROHDE&SCHWARZ

Make ideas real

CONTENTS

- Digital Back End
- ► RF Frequency and Level Agility
- ► Multiple RF Port Alignment
- Local Oscillator Distribution

ELECTRONIC WARFARE RF STIMULUS DIGITAL BACKEND

CONSIDERATIONS

- ► Pulse descriptor word (PDW) interface
- Pulse density per digital PDW interface
- Pulse dropping and prioritization
- Multiple basebands and pulse-on-pulse

WHAT IS A PULSE DESCRIPTOR WORD?

Frequency (MHz)

0

 Fully characterizes an RF Pulse.

TOA

Frequency

Phase

Modulation

Rohde & Schwarz

Time (us)

PULSE DENSITY PER PDW INTERFACE

► What is the highest PDW rate?

► Higher PDW rate → higher density scenarios, higher PRFs

► Congested RF environments

PULSE DROPPING AND PRIORITIZATION

One PDW per digital processor

 Simultaneous pulses can create problems

 Prioritization schemes provide a partial solution

MULTIPLE PDW INTERFACES AND PULSE-ON-PULSE

► Summing multiple PDW interfaces → solves simultaneous pulse problem

 Pulse-on-pulse generation capabilities increase density

► Requires more hardware

SIMULTANEOUS PULSES AS SEEN BY A RECEIVER

► Summing frequency and phase-aligned RF pulses → clean amplitude over time

What if we have simultaneous pulses spread in frequency and phase?

SUMMARY

- ► PDWs fully describe an RF pulse
- ► Higher PDW rates → higher density congested environments
- ► Pulse dropping required on a single digital generator
- ► Pulse-on-pulse capabilities available with multiple digital generation interfaces
- ► Pulse on pulse with frequency/phase spreading leads to ringing on the magnitude capture

ELECTRONIC WARFARE RF STIMULUS FREQUENCY AND LEVEL AGILITY

CONSIDERATIONS

- Instantaneous bandwidth
- Hopping bandwidth
- ► Agile frequency hopping vs instantaneous modulation bandwidth
- Digital vs Analog Pulse-on-Pulse

INSTANTANEOUS BANDWIDTH

► What bandwidth is the EW receiver covering?

Many receivers operate at multiple bands

MODULATION BANDWIDTH

The maximum bandwidth of a single signal within the RF spectrum.

For example, a 30MHz linear FM chirp utilizes 30MHz of instantaneous bandwidth over the duration of the pulse.

HOPPING BANDWIDTH

What bandwidth can the signal generator change the pulse center frequency?

How fast can the generator hop the frequency?

 Benefit of reduced hardware for interleaving on one RF port

HOPPING AND PULSE DROPPING

 Simultaneous emitters and pulse dropping when interleaving.

 Multiple pulse sources are required to solve the problem.

ARCHITECTURAL CONSIDERATIONS

- Pulse-on-Pulse in the ANALOG domain
- ► Pulse-on-Pulse in the DIGITAL domain

PULSE-ON-PULSE IN THE ANALOG DOMAIN

External combination of multiple RF signal sources

- ► Benefits:
 - Higher dynamic range
 - Wider bandwidth coverage
- ► Drawbacks:
 - SWAPC
 - Time alignment of pulses at the RF combiner output

ANALOG PULSE ON PULSE COMBINATION

Rohde & Schwarz

PULSE-ON-PULSE IN THE DIGITAL DOMAIN

- Digital combination of multiple baseband signals behind a single RF channel
- ► Benefits:
 - SWAPC
 - Time alignment of pulses at the RF output
- Drawbacks:
 - Limited dynamic range
 - Narrower bandwidth coverage

DIGITAL PULSE-ON-PULSE COMBINATION

SUMMARY

- ► Instantaneous, modulation, and hopping bandwidth are all *different*
- ► Architectural tradeoffs between analog and digital pulse combination
 - Analog \rightarrow Dynamic range and bandwidth coverage
 - Digital \rightarrow SWAPC, level control speed, time alignment

ALIGNMENT OF MULTIPLE RF CHANNELS IN AMPLITUDE, PHASE, AND TIME

CONSIDERATIONS

- ► Alignment of multiple RF channels in level, phase, and time at a specific reference plane
- Alignment techniques
- ► RF network system architecture considerations

ALIGNING MULTIPLE RF CHANNELS IN TIME, AMPLITUDE, AND PHASE

► Interferometers → phase and amplitude alignment

► TDOA systems \rightarrow time alignment

► Mixed systems → time, amplitude, and phase alignment

CONSIDER THE FREQUENCY RESPONSE OF ANY RF SYSTEM

 RF system frequency response inherent in all generator-to-receiver setups

Impacts alignment of multiple RF ports

D/A

Variable

Digital Drive

Rohde & Schwarz

PDW Input

Digital Pulse

Generation

Local Oscillator

Rohde & Schwarz

FREQUENCY RESPONSE OF MULTIPLE SIGNAL SOURCES

HOW DO WE MEASURE THE FREQUENCY RESPONSE?

 Direct S-parameter measurement is not practical, or even possible

 Vector network analyzers can measure relative amplitude, phase, and time delay

VECTOR CORRECTED WAVE RATIOS FOR MULTI-PORT STIMULUS

- The VNA is no longer used for traditional S Parameters
- ► The source on the VNA is de-activated
- The multi-port stimulus simultaneously drives all VNA ports
- Ratio measurements are conducted on the b receivers of the VNA

B WAVE RATIOS FOR RF PORT ALIGNMENT

LOCAL OSCILLATOR DISTRIBUTION

DISTRIBUTING THE LOCAL OSCILLATOR TO MULTIPLE RF STIMULUS PORTS

▶ Temperature deviation \rightarrow RF system phase deviation

 Variations in temperature create minor mechanical variations in RF cable/component lengths.

 Local oscillator distribution improves phase stability over time

PLL REFERENCE FREQUENCY DISTRIBUTION

► Pros:

- Frequency locked between ports
- Common amongst the majority of RF Signal generators
- ► Cons:
 - Minor perturbations in the low frequency reference cables results in large phase fluctuations at the RF outputs

DAISY CHAINED LO DISTRIBUTION

► Pros:

- Truly phase locked on the RF front end.
- Could utilize the internal LO of the master signal generator (depending on the architecture)

► Cons:

 Each "hop" adds electrical length from the source LO → phase variations over temperature.

LO DISTRIBUTION WITH MATCHED CABLE LENGTHS

DIGITAL BACK END CLOCK DISTRIBUTION

 Basic digital-to-analog converter consists of a clock and data bus input

 Data bus of each DAC input needs synchronization on a sample-tosample basis

DIGITAL BACK END CLOCK DISTRIBUTION

Multiple DACs across multiple hardware chassis requires a clock and data synchronization technique.

- Possible solution:
 - Distribute the DAC clock and align input data samples on a synchronized release trigger

SUMMARY

- ► Temperature deviations → phase deviations
- ► Low frequency reference coupling only \rightarrow larger phase drift
- ▶ True LO distribution \rightarrow common phase drift
- ► Digital backend synchronization → Time aligned pulses at RF
- ▶ Digital backend reference \rightarrow could lead to phase drift

Find out more www.rohde-schwarz.com/radar

ROHDE&SCHWARZ

Make ideas real

