

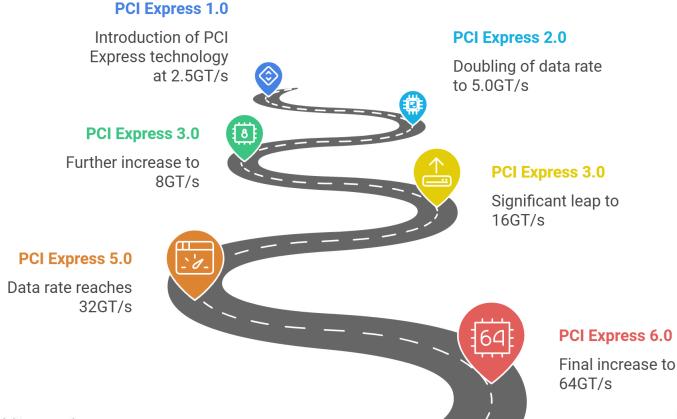
Contents

- PCle 簡介
 - PCIe 發展與應用
 - PCIe 7.0
- PCIe 於汽車展業之高速應用發展
- PCIe Cable的測試挑戰
 - 終端客戶的問題
 - 實現 100% Cable 檢測
 - 多種高速 Interface 的測試應用

PCle 簡介

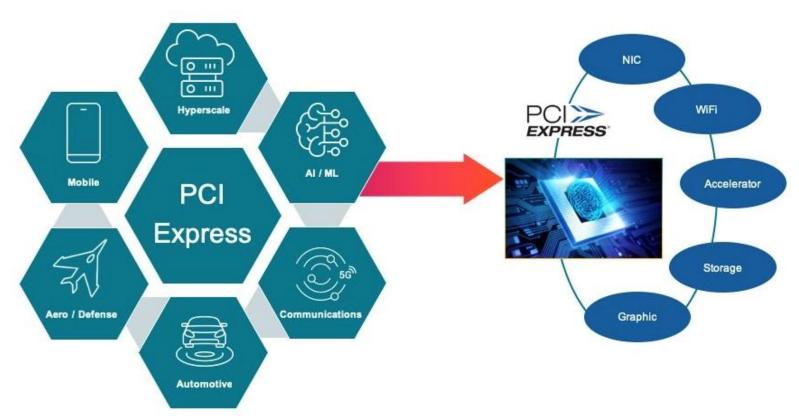
Confidential

Confidential



- Early parallel versions of PCI technology accommodated speeds of hundreds of megabytes/second, well matched to the graphics, storage and networking demands of the 1990s.
- In 2003, PCI-SIG evolved to a serial design that supported speeds of gigabytes/second to accommodate faster solid-state disks and 100MbE Ethernet. Almost like clockwork, PCI-SIG has doubled PCIe specification bandwidth every three years to meet the challenges of emerging applications and markets.
- Today's announcement of PCI-SIG's plan to double the channel's speed to 512 GB/s (bi-directionally) puts it on track to double PCIe specification performance for another 3-year cycle.

PCI Express Generational Evolution



資料來源: PCI-SIG

ALLION° AIOT EXPERT

來源: PCI-SIG

● 隨著越來越多的系統升級,市場上也有越來越多的產品上市,PCIe 5.0 的應用正在加速。話雖如此,PCIe 3.0 和 4.0 仍然是目前最成熟的 PCIe 介面,作為各種 I/O 用例的主要互連形式,被廣泛部署在大量的應用中。

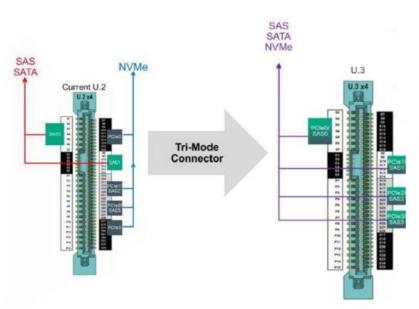
● 產業應用:

- Ethernet: PCle 4.0 可以用於 100G 和 200G。PCle 5.0 可將其性能提升到 400G,目前已經可供使用。
 而在未來,PCle 6.0 將把這一數位提升到 800G。
- Storage: PCle 4.0 可以使傳輸速率達到約 7000MB/s · PCle 5.0 將其提升到約 14GB/s · 而 PCle 6.0 應該會將其進一步提升到 28GB/s 。
- Memory: 需要利用PCIe 5.0 & PCIe 6.0的高性能。
- Automotive: 目前ADAS(高級駕駛輔助系統)使用的是PCIe 4.0,未來的自動駕駛會需要更高的性能來處理所有的 攝像頭、雷達和其所接收到的資料。
- Data Center: AWS、Microsoft Azure、Google Cloud...等,
 這些用於超大規模資料中心可以透過PCIe來充分利用所能獲得的所有頻寬。
- AI: 人工智慧 (AI) 和 機器學習 (ML) 需傳輸海量資料,PCIe 介面造成了瓶頸。
 幾乎所有的應用都是如此,比如自動駕駛、醫療成像、基因組測序、資料採擷等等。
 無論是在 CPU、GPU、FPGA,還是在 ASIC/SoC (如 Google 的 TPU) 上進行訓練/推理,瓶頸都是 PCIe。

- 在現今雲端技術蓬勃發展推波之下,伺服器 (Server) 具有相當重要的地位,舉凡全球眾所熟知的Google服務、Amazon AWS、Microsoft Azure等服務之關鍵效率都須借重設計精良的高速大容量Server才能精準實現其服務效能,而Server內 部則必須配備高速的傳輸能力才能有效回應複雜系統的需求。
- 在Server的運用環境下,大致上可分為:
 - Storage
 - High-Speed Ethernet

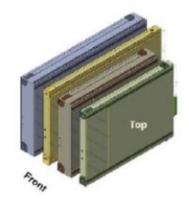
PCIe 發展與應用 - M.2

- 儲存裝置速度的提升與 NVM(Non-Volatile Memory)的普及化,消費性的儲存裝置由 2.5" SATA,逐漸演進至 M.2 並採用 PCIe 作為傳輸介面。
 此一規格在空間上更加精簡,速度也遠遠超過 SATA 6Gbps 的限制,成為新一代消費性產品的主流儲存介面。
 此外,M.2 也廣泛應用在不止 Server 端的儲存介面。
- M.2 連接器最多可提供 PCIe x4 的頻寬,再加上 PCIe 新規範的加持,使其傳輸速度加倍。



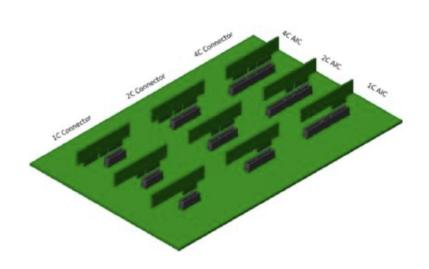
PCIe 發展與應用 - U2 & U3

- U.2 /U.3 (SFF-8639) 連接器應用於工業級固態硬碟或機械硬碟的背板接口,作為伺服器的緩衝器, 由於 PCIe 介面支援熱插拔,因此可大幅提升介面穩定性。
- SSFF-8639 包括此 PCIe、SATA 和 SAS 三種標準,實現單個連接器中整合 SAS 和 PCIe 並兼容 SSD 和 HDD 標準。


來源: Dell

PCIe 發展與應用 - EDSFF E.1 & E.3

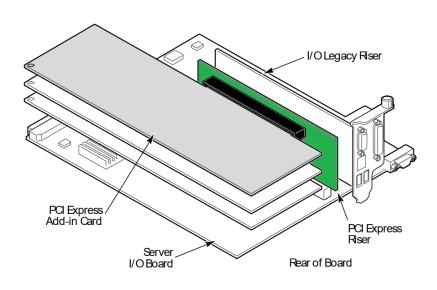
- 隨著更大儲存容量以及外型尺寸規格的需求不斷提升,目前U.2/ U.3 規格已無法再滿足產業需求。伺服器產業又推出了 EDSFF (Enterprise and Datacenter SSD Form Factor)標準,以因應市場發展。
- EDSFF系列規格的目標在於解決舊有外觀規格的限制外,並滿足目前資料中心散熱、功耗與擴充性的需求,並考量到未來能與PCIe 4、PCIe 5與PCIe 6相容,提高EDSFF標準的發展。
- EDSFF系列規格主要有三種,E1.L、E1.S 以及E3。


E3

PCIe 發展與應用 - GenZ / OCP NIC 3.0

● 隨著時代的進步加上科技日新月異,傳統的PCIe Slot也到了使用性的臨界點, 使用者需要更多的PCIe 通道以及更快的傳輸速度,來連接主板與背板,或是處理高速網路訊息量。

有鑑於此,新一代外型規格Gen-Z/OCP NIC 3.0採用的SFF-TA-1002: 1C/2C/4C/4C+ 連接器,也如雨後春筍般的出現。



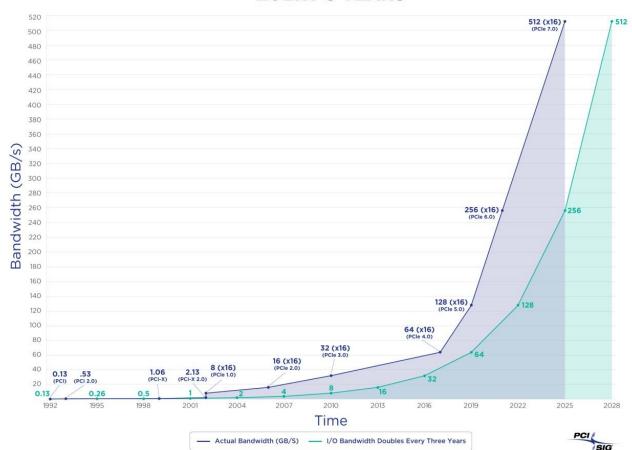
來源: Broadcom

PCIe 發展與應用 - Riser Cable

- 延伸的Riser Card or Riser Cable可擴展或延伸PCIe Slot使其連結擴充更多的設備。
- 改變資料傳輸連結來滿足特定的系統要求,以確保穩定運作。 PCIe Riser Card or Riser Cable 就是此類組件的一個範例。
- 用於將顯示卡連接到主機板,從而允許將顯示卡安裝在 PC 機箱支援的不同位置。

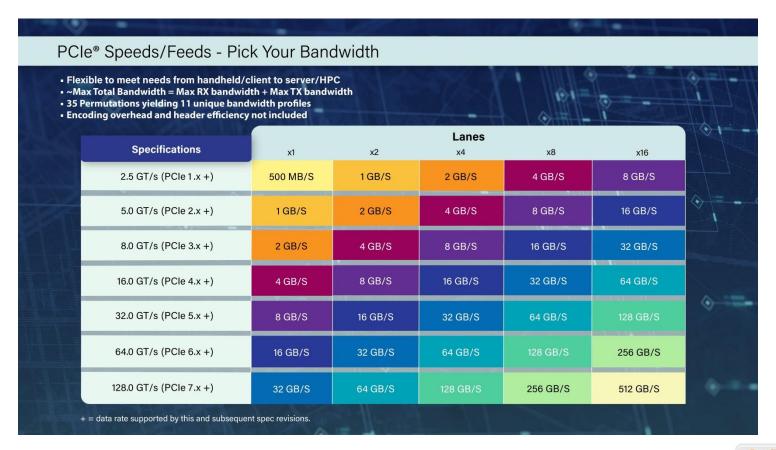
來源: Amazon

15


PCle 7.0

© Allion Labs, Inc. All rights reserved.

PCIe 7.0


PCIe 7.0

- With the forthcoming PCIe 7.0 specification, PCI-SIG continues our 30-year commitment to delivering industry-leading specifications that push the boundaries of innovation, said Al Yanes, PCI-SIG President and Chairperson.
- As PCIe technology continues to evolve to meet the high bandwidth demands, our workgroups' focus will be on channel parameters and reach and improving power efficiency.
- The PCIe 7.0 specification is targeted to support emerging applications such as 800 G Ethernet, AI/ML,
 Cloud and Quantum Computing; and data-intensive markets like Hyperscale Data Centers, High-Performance Computing (HPC) and Military/Aerospace.

PCle 7.0

PCle 7.0

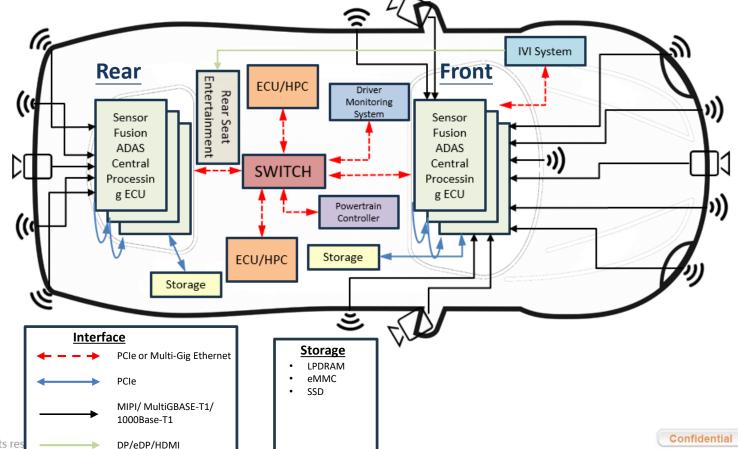
- PCIe 7.0 specification with the following feature goals:
 - Delivering 128 GT/s raw bit rate and up to 512 GB/s bi-directionally via x16 configuration
 - Utilizing PAM4 (Pulse Amplitude Modulation with 4 levels) signaling
 - Focusing on the channel parameters and reach
 - Continuing to deliver the low-latency and high-reliability targets
 - Improving power efficiency
 - Maintaining backwards compatibility with all previous generations of PCIe technology

PCIe 於汽車展業之高速運用

Confidential

Current and Possible Future Automotive Usages (Level 3 ~) ALLION' AIGHT EXPERT

Sensor


- Cameras
- GPS
- Ultrasonic
- Radar
- LiDAR

ECU/HPC

SoM

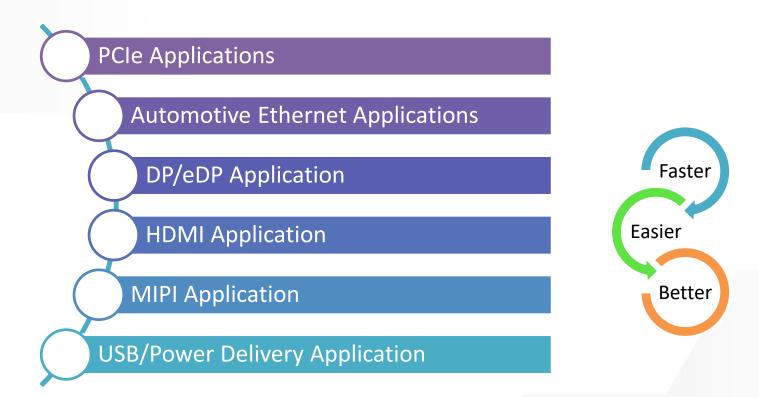
8 cores@ above 2Ghz Memory

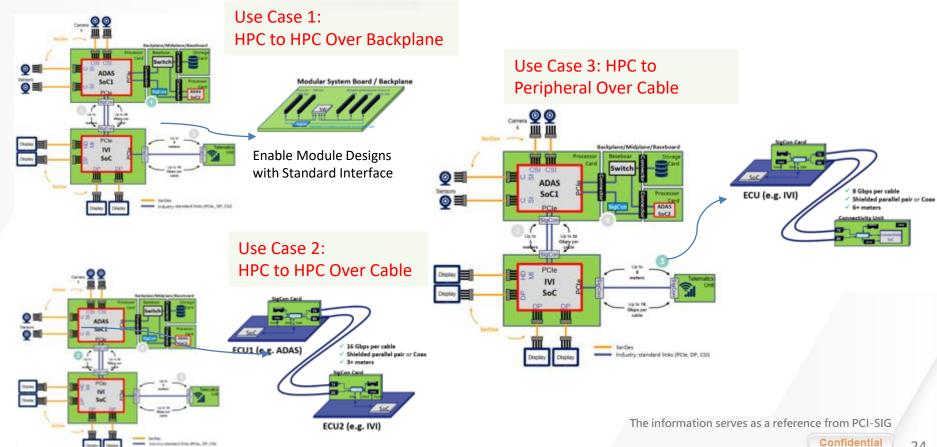
- LPDDR5
- eMMC 5.1 1/0
- Automotive Ethernet
- PCle
- USB 3.2
- **HDMI 2.1**
- DP/eDP
- MIPI

HPC Applications in Automotive Ecosystem

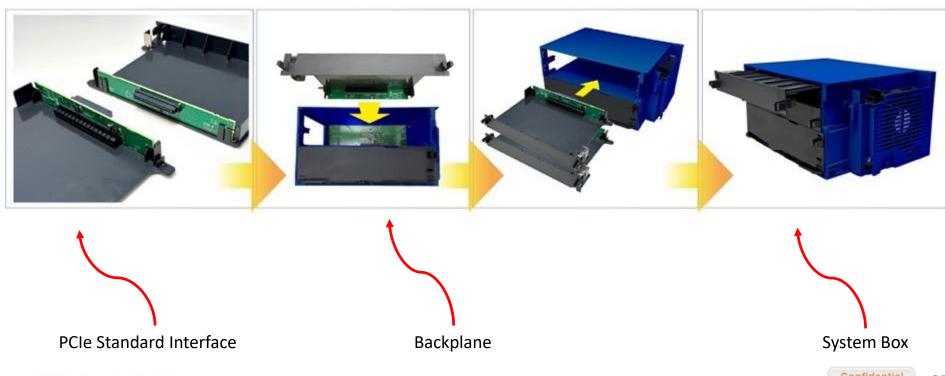
High-Performance Computing (HPC) plays an important role in the automotive ecosystem and requires powerful computing capabilities to meet the demands of the following applications.

- Sensor Data Analysis
 - Using HPC for large-scale data analysis and optimization can help drivers improve fuel efficiency, performance, and safety of vehicles.
- Autonomous Driving
 - HPC provides the necessary computational power to implement complex algorithms and models, making autonomous driving systems more reliable and efficient.
- Real-Time Applications
 - Autonomous vehicles require processing large amounts of sensor data to make realtime decisions and responses.

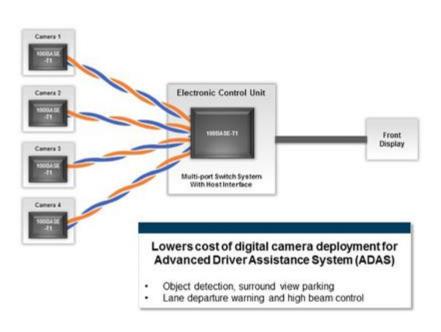


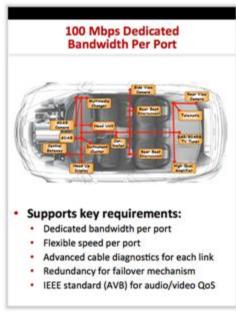

High-Speed Technology Applications for the Automotive Industry ALLION

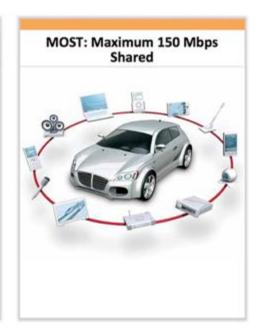
PCIe Use Case



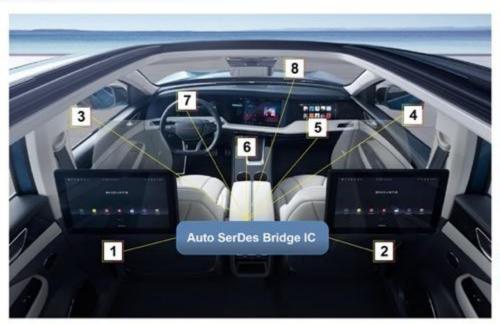
Use Case 1: HPC to HPC Over Backplane

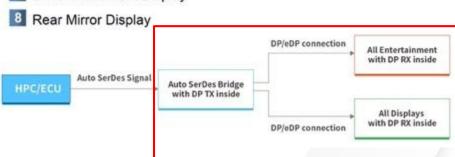

Automotive HPC adopts PCIe Interface to support the High-Speed application.


Automotive Ethernet Use Case



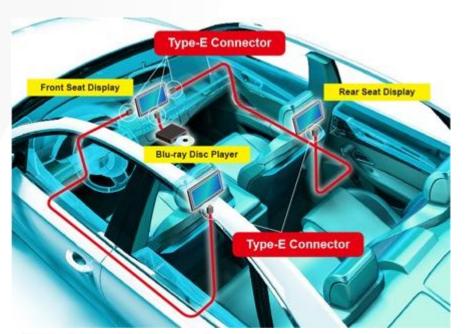
Use Case 1: ADAS


Use Case 2: Infotainment



DP/eDP Use Case: ECU to Modules of DisplayPort Technology

- Rear Seat Entertainment (LEFT)
- Rear Seat Entertainment (Right)
- 3 Side Mirror Camera (LEFT)
- Side Mirror Camera (RIGHT)
- 5 Front Seat Entertainment (Right)
- 6 Centre Info Display
- Driver Instrument Display



HDMI Use Case:

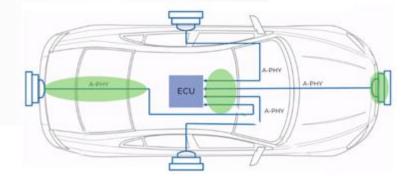
Use Case 1:

Type E to Type E
(Built-in device to Built-in device)

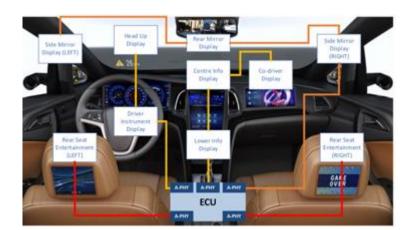
Use Case 2:

Type A to Type E

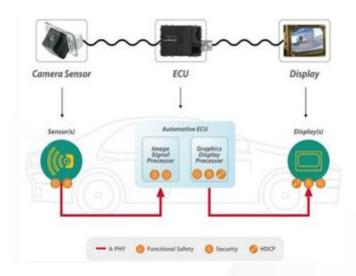
(Portable device to Built-in device)



© Allion Labs, Inc. All rights reserved.


MIPI Use Case

Use Case 1:Surround View



Use Case 2: Display Cockpit

Use Case 3:

Digital Camera

USB Type-C and USB Power Delivery Use Case

Position Use Case	USB-C in Headunits	USB-C in Rear-Seat-Entertainment	USB-C in Rear-Seat-Chargers
USB Data Storage	0	0	
240W up Fast Charging	0	0	0
Multimedia Sharing (Alternate Mode)	0	0	
Apple CarPlay	0		
Android Auto	0		

PCIe Cable 的測試挑戰

Confidential

終端客戶的問題

Confidential

Background

- The AIPC era is near, led by advanced data infrastructure with ever-faster data flows.
- High Speed Cable quality is vital for signal clarity and product integrity.
- Variable quality in cable production underscores the importance of thorough pre-shipment inspections.
- Random post-production tests for high-frequency traits are insufficient; stronger measures and 100% testing are needed at the IQC/OQC stage.

What Problems will Customers Encounter?

- Inferior cables in data centers may trigger signal problems, jeopardizing connectivity and risking global service outages.
- In autos, faulty cables can cause critical vehicle malfunctions, risking safety.
- The costs of recalling systems or replacing faulty cables far outweigh those 100% of the comprehensive cable testing.
- For ODMs, consistently performing incoming quality checks on externally sourced cables is challenging.

ACMS Series – HF Cables Testing Application Overview

實現 100% Cable 檢測

ACMS Series Software Solution Advantage

- Allion's ACMS software is an advanced software solution designed for R&S (Rohde & Schwarz) network analyzers and test equipment. ACMS is committed to providing maximum flexibility, reliability, and efficiency to ensure that users can achieve 100% cable testing in a production line.
- The following are the main advantages of ACMS:
 - 1. Complete Integration
 - 2. User-Friendly Interface
 - 3. Flexible Customization

ACMS Series Software Solution Advantage – con't

- The following are the main advantages of ACMS:
 - 4. Efficient Automation Functions
 - 5. Rich Data Analysis Tools
 - 6. Continuous Updates and Support

In summary, ACMS software is a powerful and advanced software solution that provides users with a reliable and efficient testing solution to help customers achieve 100% quality control in high-speed cable verification and testing.

ACMS's Advantage – Part 1

With the increasing demand for testing of 100% production cables by the server vendors, data center & automotive makers, ACMS offers a comprehensive solution:

1. Reduced Testing Time

 Slashes traditional cable testing times from 20 minutes to just 40 seconds, boosting your production line's speed and capacity for greater efficiency.".

2. Manpower Savings

 Simplifies the testing process to a one-person operation, markedly cutting down on labor costs versus the conventional three-person team requirement.

3. Automated Testing and Analysis

 Delivers seamless, automated testing and analysis, minimizing manual effort and human error. It autonomously processes and presents results post-test.

ACMS's Advantage – Part 2

4. Improved Accuracy and Consistency

The software manages all testing and analysis, guaranteeing uniform precision and reliability while

reducing human error.

Allion ACMS boosts manufacturer's production line's efficiency and cost-effectiveness, providing a substantial competitive advantage.

Confidential

Faster, Easier, Better about your Quality Control

- For example: MCIO Cable

Other Brand: 20 hours ACMS4: 40 minutes

30 times quickly compared to the other brand

Calibration (64 Ports Switch)

Manual: 8 hours ACMS4: 5 minutes

96 times quickly compared to the manual test

Manual: 20 hours ACMS4: 60 sec

1200 times quickly compared to the manual reporting

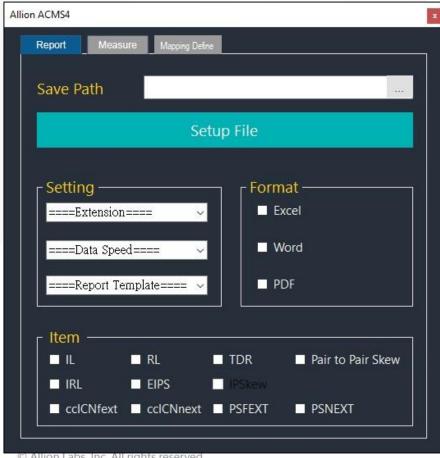
No operate: Equipment Control PC Only: Change Cables One button Scan OR Code

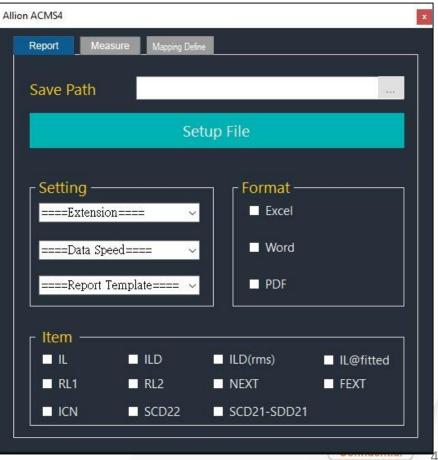
Operate

Testing

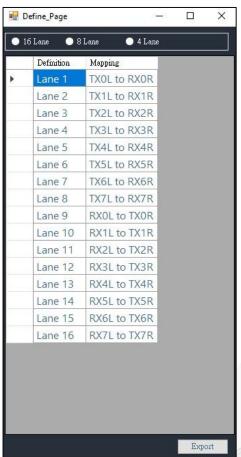
Report

Software Home Page



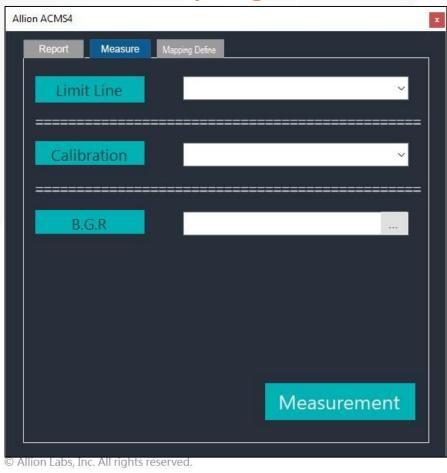


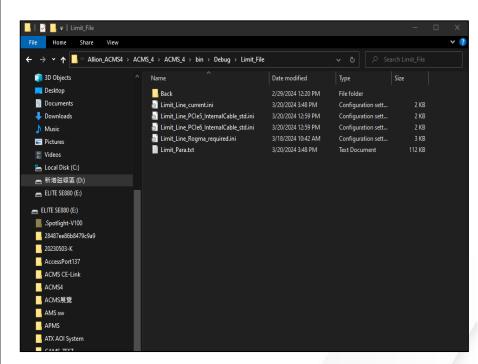
Software UI - Report



© Allion Labs, Inc. All rights reserved.

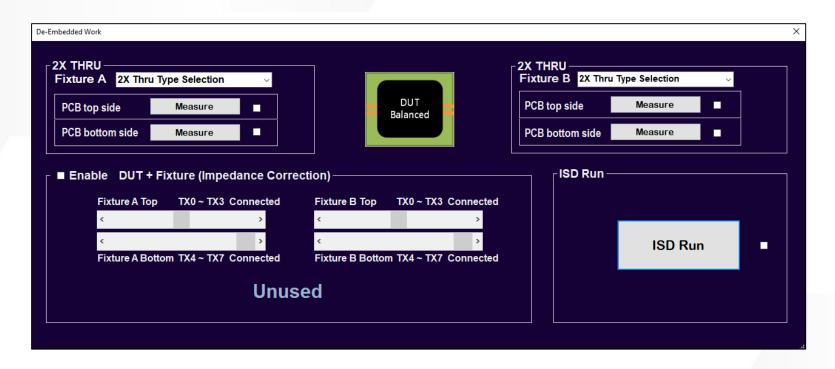
Software UI - Measure



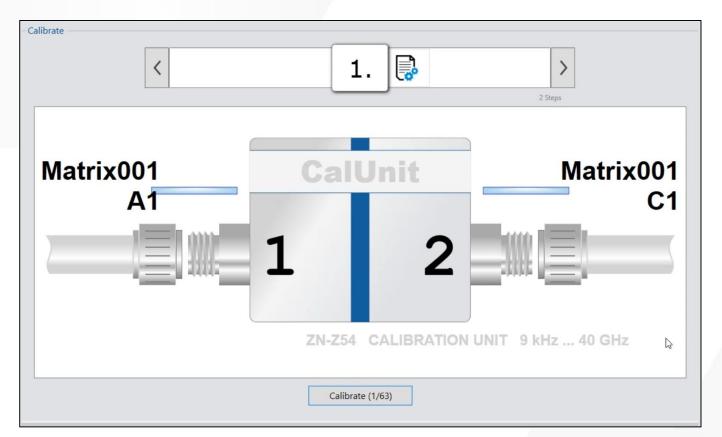


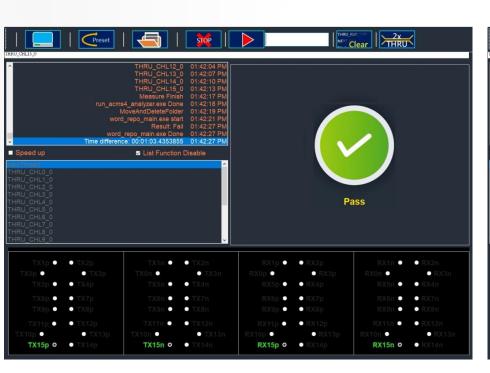
Confidential

Limit Line Setup Page



Limit Line File


ISD Software Page


Calibration Software Page

Testing Page

Testing Page (HDMI)

AUTO Report - 01

Record DUT Name and Test Result

Rina Cable Test Report

Company Name: Rina

Part Number: Rina

Serial Number: sefds

Report Date: 20th Mar, 2024

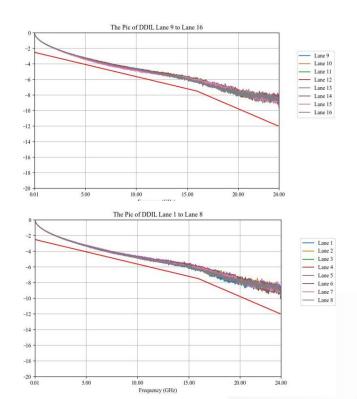
Test Result: Fail

Tester: Rina

Data Summary

Test Item and Results		
Test Item	Result	
The Results of DDIL Test	Pass	
The Results of DDRL Test	Pass	
The Results of iRL Test	Pass	
The Results of Impedance Test	Pass	
The Results of EIPS Test	Pass	
The Results of Inter-Pair Skew Test	Pass	
The Results of PSNEXT Test	<u>Fail</u>	
The Results of PSFEXT Test	<u>Fail</u>	
The Results of ccICNNEXT Test	Pass	
The Results of cCICNFEXT Test	Pass	

Definition Mapping


Definition	Mapping
Lane 1	TX0L to RX0R
Lane 2	TX1L to RX1R
Lane 3	TX2L to RX2R
Lane 4	TX3L to RX3R
Lane 5	TX4L to RX4R
Lane 6	TX5L to RX5R
Lane 7	TX6L to RX6R
Lane 8	TX7L to RX7R
Lane 9	RX0L to TX0R
Lane 10	RX1L to TX1R
Lane 11	RX2L to TX2R
Lane 12	RX3L to TX3R
Lane 13	RX4L to TX4R
Lane 14	RX5L to TX5R
Lane 15	RX6L to TX6R
Lane 16	RX7L to TX7R

AUTO Report - 02

The Results of DDIL Test

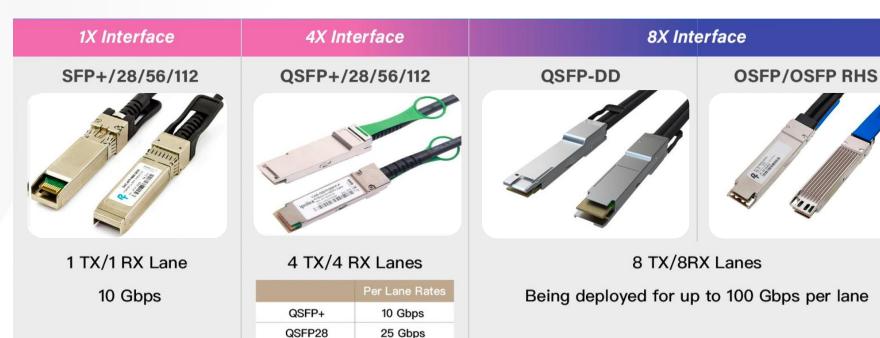
Test Item	Test Port	Test Results
	Lane 1	Pass
	Lane 2	Pass
	Lane 3	Pass
DDIL	Lane 4	Pass
	Lane 5	Pass
	Lane 6	Pass
	Lane 7	Pass
	Lane 8	Pass
	Lane 9	Pass
	Lane 10	Pass
	Lane 11	Pass
	Lane 12	Pass
	Lane 13	Pass
	Lane 14	Pass
	Lane 15	Pass
	Lane 16	Pass

多種高速 Interface 的測試應用

High-Speed Cable Test: IO Interface

USB-IF	HDMI 2.1	DP 2.1	TBT5
USB-C Cable	HDMI Ultra High-Speed	DP54 & DP80	Thunderbolt Cable
(B)(S)			
4 Differential Pairs	4 Differential Pairs	5 Differential Pairs	4 Differential Pairs
40 Gbps	48 Gbps	54 Gbps	40 Gbps
80 Gbps		80 Gbps	80 Gbps

High-Speed Cable Test: Datacenter & Servers


SAS 4/PCle Gen4	PCle Gen5	PCle Gen5	16X Interface
Slimline SAS	GenZ	MCIO	PCIe Riser Cable
4 TX/4 RX Lane 8 TX/8 RX Lane	4 TX/4 RX Lane 8 TX/8 RX Lane	4 TX/4 RX Lane 8 TX/8 RX Lane	16 TX/16 RX Lane
24 Gbps (SAS 4) 16Gbps (PCle Gen4)	32 Gbps (PCle Gen5)	32 Gbps (PCIe Gen5) 16 TX/16 RX Lane	32 Gbps (PCle Gen5)

High-Speed Cable Test: IEEE 802.3 (Direct Attach Copper Cables)

QSFP56

QSFP112

50 Gbps

100 Gbps

Confidential

ACMS4 ~ ACMS6 (VNA + 64 Ports Switch)

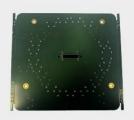
56

ACMS4 (VNA + 64 Ports Switch)	VNA Mode	Frequency Range	Application
	ZNB	100KHz~43.5GHz	 PCle Gen5/Gen6 MCIO GenZ SAS/Slimline SAS SFP/SFP+ QSFP+/28/56/112
ACMS6 (VNA + 64 Ports Switch)	VNA Mode	Frequency Range	Application
	ZNA	10MHz~67GHz	 PCIe Gen7 MCIO GenZ QSFP-DD 800G OSFP 800G Future High-Speed Interface

© Allion Labs, Inc. All rights reserved.

Test Fixtures for Cable Testing

QSFP Test Fixture


PCIe Gen5 Test Fixture

PCIe Riser Cable

MCIO Test Fixture

MCIO Plug Test Fixture

Why Allion?

- Allion's ACMS Automation Solution ensures each cable in the production or incoming quality check (IQC) process, giving you a 100% confidence level of the quality.
- Allion actively shapes testing standards through our engagement with leading associations, ensuring we stay ahead with the most current specifications.
- Our multidisciplinary EE, ME, and SW RD teams excel in creating tailored AI/Auto solutions that align perfectly with client needs.
- Allion specializes in crafting high-frequency fixtures for a range of interfaces, including PCIe, High-speed Ethernet, SAS, USB, and HDMI, enhancing our ACMS offerings.

Allion is the premier resource for all of your third party testing needs. Our services bring products to market more quickly, reliably, and cost effectively to protect your brand quality and that of your suppliers.

Thank you

© 2023 Allion Labs, Inc. All rights reserved. No text, logo, or graphic from this document may be copied or retransmitted unless expressly permitted by Allion Labs, Inc. and their respective owners.