

The challenges of SI Models

Ted Wang SI Engineer Samtec Taiwan

About Samtec

The industrial

THE TECHNICAL RENAISSANCE IS...

...driven by **progress**, challenged with unprecedented performance **demands**, a catalyst for next level technologies and **innovation**...

Research & Development

Simulation could be the good answer

Simulations need models

The evolution

Model support

Correlation : Index of model accuracy

Measuring fixture

Test Assembly Overview:

292-CM

PCIE-G5

Measuring system

VNA/PNA

Micro-probe

Factors

• Material

None-conductive(connector body, insert/over molding, insulator...) Conductor(copper, brass...)

- Contact deflection Deflecting angle
- Production tolerance
 - contact insertion, forming, sway
- **Processing** solder volume, part placement
- Application mating depth, compression force
- **De-embedded Process** De-embedding method, de-embedding bandwith
- **PCB design/tolerance** mis-registration, via structures

Correlation - PCIE-G5

Differential Return Loss:

Differential FD FEXT: Power Sum

Correlation – 292-CM

Frequency(GHz)

- Model correlation is time consuming
- Model is not perfect, even the correlated model
- Most of models for high-speed products are correlated model
- None correlated model doesn't mean a bad model

Model Boundary

Two row SMT connector

RF connector

High Density BGA

Connector + Predefined PCB

Connector + specific PCB

Connector Only

Two row SMT connector

3D structures

PCB stack-up

Reference Layout

Sweep Anti-pad size

Sweep stack-up

Anti-Pad variations

The stack-up

3mil to 7mil

Terminal TDR Impedance Plot 2

How about RF connector?

RF connectors

Full mated model with specified PCB design

Everything inside the PCB will change the result

- Stack-up
- Via type: mechanical drill, uVia, blind via...
- Via dimensions: pad size, drill size, back-drill
- Breakout Layer: via length
- Ground via pattern

Connector with PCBs

Full mated model

Results

freq, Hz

Alternative

Full mated model

Concatenated model?

Let's separate the models (L2 & L5)

freq, GHz

freq, GHz

time, psec

-100

-200

The comparisons (L2 & L5)

time, psec

freq, GHz

The comparisons (L9 & L20)

185-CMM – The microstrip version

Separated model

The comparisons- 185CMM

What if there is a big enough anti-pad?

<u>с</u>)--ү

Ansys 2024 R1.1

1.5

No, it doesn't work!

What we have learned here

- Model for two row SMT connector is more forgiving to the PCB effects
- For RF connector, a model for connector with specified PCB launch would be suggested
- For coax-like RF connector (strip-line breakout), it's possible to offer/use connector-only model for models cascading.
- For none-coax-like RF connector (micro-strip), connector-only model is not practical
- PCB effects become dominator when signal path is inside the PCB

Array connector: We don't have a choice

Connector only model

- Correlated model
- Ports set on solder ball/pad
- Pre-defined pinout
- Cascading PCB model by customer is required since the board effect is not predictable

Separated models

Yes! Model Cascading works

Cascading models or End-to-End model?

Cascaded Interconnect Model:

- A separate and then cascaded simulation of the geometry
 - There is a cut made in the simulation
 - Typically, this is done at the BGA region
- Allows for the mixing and matching of parts
- Smaller simulation results in a shorter run-time

End-to-End Interconnect Model:

- A continuous and complete simulation of the geometry
 - There are no cuts made in the simulation
- More closely mimics actual performance in a system Larger simulation results in a longer run-time

Performance Impact

Performance Impact

Simplified Test Model

- This model was made to mimic the performance of a real connector
- Design Metrics:
 - 5mm Height
 - BGA Ball Attach
 - Short L1 Microstrip to Via
 - L8 Stripline Routing
- While simplified, this design displays similar characteristics of the real connector shown in previous slides

Isolating the Resonance

EM-Field

Simulation with Resonance

Simulation without Resonance

Simulation with Resonance

Simulation without Resonance

Additional Resonance Considerations

- It is important to consider all possible factors which could impact the presence/absence of a resonance
- Some possible factors:
 - Airbox boundary type
 - Airbox location
 - Size of ground planes
 - Impedance boundaries on unused pins
 - Via location in board
 - Grounding top plane of board

Challenges for SI is endless!

Reference & Thanks

Robert Branson: Cascaded or End-to-End Models: What Do We Give Up? https://www2.samtec.com/l/271452/2022-08-19/35krkg

Alejandro Solis & Jason Chiang: material and information support Henry Dai: Simulation support

Samtec TDC - Taiwan Design Center (RF Center)

CABLES
Design & Fabrication
of Raw Cable
Cable AssembliesVertical
Full SystFull SystCONNECTORS
Design & Fabrication
Cable Connectors
Board Connectors

TECH SUPPORT

Launch Optimization Simulation & Testing Full System Optimization

Vertical Integration = Full System Support

TDC (Taiwan Design & Manufacture center)

1.000

RF compression mount connector

TEST & MEASUREMENT APPLICATIONS

Threaded Coupling | High Mechanical Stability | Field Replaceable | Cost-Effective Assembly

NEXT GEN MICROWAVE CABLE

INTERLAYER IMPROVES STABILITY

Multi-port solution

Test Fixture & Test system

