THE METAVERSE AND EXTENDED REALITY

A first test and measurement perspective

Andreas Roessler Technology Manager

ROHDE&SCHWARZ

Make ideas real

QUO VADIS, 5G? IS IT TIME FOR 5G BASHING?

FORBES > INNOVATION > CLOUD

The State Of 5G In The U.S. And How It Might Improve

Another example: South Korea launched the first 5G network in 2019 but hasn't seen the expected technological transformation due to limited demand for advanced services and a lack of a "killer app" driving adoption¹)

- \$20+ bn investment in 5G infrastructure; some 215,000 base stations (2% support FR2)
- End of 2022: 28.2 million 5G subscribers, compared to 4G LTE same period: 46.2 million subscribers²⁾
- ARPU for 4G LTE: rose from 5% to 12% annually, with 5G NR ARPU climbing slowly or is stagnating
- Nov-2022: Korean government recalls 28 GHz frequency licenses³⁾

QUO VADIS, 5G? IS IT TIME FOR 5G BASHING?

HOWEVER and in all fairness, we should not forget that 5G is still in its infant state from a deployment point of view! Not even half of the specification has yet made it to the market. And most of the operators have not yet switched to 'Standalone' (SA) mode:

300 commercial 5G networks worldwide in 114 countries

 121 investing in Standalone mode;
 43 operators deployed, launched or soft-launched 'Standalone' mode

From a pure consumer perspective, where and what is the "killer" application for 5G?

https://gsacom.com/download.php?id=16165 [Nov 2023]

WHAT IS THE METAVERSE?

An immersive, persistent, pervasive, interconnected virtual 3D world shaped by extended reality applications where many people can gather to work, shop, play, and socialize.

https://en.wikipedia.org/wiki/Snow Crash

Users are totally immersed in a simulated digital environment or a digital replica of reality.

Training/Education, Healthcare

Digital Twins

Consumer: Gaming, Social

Consumer: Gaming, Social

Collaboration

Consumer: Gaming, Social

WHO IS CREATING THE METAVERSE? THE SEVEN LAYERS OF THE METAVERSE ECOSYSTEM

۵

EA

Experience

Discovery

Creator economy

- Spatial computing
- **Decentralization**
- Human interface

Infrastructure

Metaverse Market Map

https://holonext.com/metaverse-101-understanding-the-seven-layers/ https://medium.com/building-the-metaverse/market-map-of-the-metaverse-8ae0cde89696

IS THERE ONE METAVERSE? OR MANY?

"The many-worlds interpretation is the only completely coherent approach to explaining both the contents of the quantum mechanics and the appearance of the world!"

Hugh Everett (1930 – 1982)

Industry is where the metaverse may reach its greatest potential

Source: ABI Research, Evaluation of the Enterprise Metaverse Opportunity, Third Quarter, 2022

https://www.nokia.com/metaverse/industrial-metaverse/the-metaverse-at-work-research/ https://www.nokia.com/sites/default/files/2023-02/potential-of-the-industrial-metaverse-market.png

Solution space that Figure ted movetation Figure addition

- Solution and dev
 Good monettaat
 from 2025
 - Reace Propagation
- Mile memory pose

HOW TO UNLOCK THE FULL POTENTIAL OF THE METAVERSE? WHAT ROLE DOES 5G AND 6G PLAY IN IT?

- High data rates, low latency
- Device form factor for consumer applications: small, lightweight, even fashionable; low power consumption
- Optimized edge processing and split rendering architectures to effectively handle Motion-to-Render-to-Photon latency (M2R2P)

Future: delay-aware schedulers in 6G networks

WHERE DO SUCH REQUIREMENTS ORIGINATE FROM? DATA RATES AND LATENCY

The Distribution Challenge

h		
	mmersive	evneriences
J		CAPCHENCES

- are interactive
- are untethered
- recreate reality

				IN	DUSTRY FORUM
	Standard	Early VR	Entry-level VR	Advanced VR	Ultimate VR
	Video resolution	4K 2D video (3840×2160)	8K 2D video (7680x3840)	12K 2D video (11520×5760) 22	24K 3D video (23040×11520)
es	Monocular resolution	960×960 (90° FoV) – 240p	Entry-level VR Advanced V 8K 2D video (7680-0840) 12K 2D video (1220-576) 1920x 1920 3840-3840, (127 FoV) 9(90 FoV) - 4800p (127 FoV) 21 32 8 bit 10 bit 165:1 215:1 30 60 644M 265M 100Mbps 398Mbps 30ms 20ms 1.5E-5 2E-6	3840×3840 (120° FoV)	7680×7680 (120° FoV)
	Pixels/degree	11	21	32 🔁 55-	60 🗧 64
es	Colour depth	8 bit	8 bit	10 bit	12
	Compression ratio	165:1	165:1	215:1	350:1 (3D)
	Frame rate	30	30	60	100 120
	Typical video bit rate	16M	64M	265M	2.18G
	Typical network bandwidth requirement	25Mbps	100Mbps	398Mbps	3.28Gbps
	Typical network latency requirement	40ms	30ms	20ms 15	10ms
	Typical network packet loss requirement	1E-4	1.5E-5	2E-6	1E-7
	A second second second	- Construction	a second states	and share the	la a

Reality requires significant amounts of audible and visual data to be delivered with very low latency level

5G provides a predictable distribution medium for immersive content

VRIF – Immersive Media Meets 5G – April 2019

Component	Latency	Location
SLAM ¹⁾	5070 ms	AR device
Object tracker	25 ms	AR device
Game simulation	25 ms	Remote server
Rendering	216 ms	AR device
AR device	78 ms	AR device
Video decoding	12 ms	Remote server
Object detection (OD)	250 ms	Remote server

https://www.ericsson.com/en/blog/2022/11/network-performance-metaverse-5g https://www.vr-if.org/wp-content/uploads/1-2-5-VRIF-Immersive-Media-meets-5G-workshop-1.pdf

¹⁾ Simultaneous Localization And Mapping

SPECTRUM CONSIDERATIONS FOR THE METAVERSE AND XR DATA RATES

Holographic communications

- Holographic representation is based on volumetric media
- Objects are represented as sets of 3D volume pixels
- Actual image is dynamically rendered from any viewing point angle to the local endpoint
- Typical throughput for a full immersive (16K resolution, 360°) holographic experience: 500Mbps
- Outdoor cell-edge efficiency: 0.45 bits/s/Hz

XR (Extended Reality)

- Immersive XR requires significant data processing that will be mitigated through cloud-based technologies, where content will be stored, rendered, and computed in the cloud
- Fully immersive 16K resolution
- Frame rate minimum: 60Hz and 12-bit pixel representation
- Required throughput: 450Mbps
- Outdoor cell-edge spectrum efficiency: 0.45 bits/s/Hz

DL spectrum needs: ~1GHz per network

Source: https://www.nokia.com/about-us/newsroom/articles/spectrum-for-6G-explained/

Source: Next G alliance, Qualcomm contribution "Advanced Massive MIMO for Upper Mid band" (November 2021)

SPECTRUM CONSIDERATIONS FOR THE METAVERSE AND XR THz BASED GESTURE RECOGNITION FOR CONTROL AND TRACKING?

- (drawing not to scale)
 - Use of a THz-based RF transceiver chipset with a phased array antenna (e.g. uniformed linear arrays) to "sense and monitor" the space in front of the person using the AR/VR headset
 - Power and therefore range, is not the limiting factor, but what about resolution, e.g. sub-cm range?
 - Access to wider bandwidths at (sub-)THz frequencies allows finer resolution to detect particular finger, hand, arm and body movements

f in GHz

XR-RELATED FEATURES IN 3GPP RELEASE 15 AND BEYOND 5G NR AIR INTERFACE: URLLC AND POWER CONSUMPTION (1/2)

Release 15	Release 16
BWP switching	SCell dormancy
Downlink	Cross-slot scheduling
Preemption	PDCCH Wake-up signal
Uplink skipping	Uplink configured grant
Mini-slot transmissions	Slot aggregation
X	Uplink preemption

XR-RELATED FEATURES IN 3GPP RELEASE 15 AND BEYOND SYSTEM LEVEL AND CORE NETWORK ASPECTS

3GPP working group	XR-related study item / work item description for Rel-17
SA1	XR (and Cloud Gaming) use cases are outlined in SA1 study item on Network Controlled Interactive Services (TR 22.842)
SA2	Work item on 5G System Enhancement for Advanced Interactive Services (<u>SP-190564</u>) proposes to introduce new 5Q1s to identify the requirements on traffic from SA1 NCIS
SA4	Feasibility Study on Traffic Models and Quality Evaluation Method for Media and XR Services in 5G Systems (TR 26.926)
SA6	Study on application architecture for enabling Edge Application (TR 23.758)
RAN1	Study on XR Enhancements for NR (TR 38.838)

XR-RELATED FEATURES IN 3GPP RELEASE 15 AND BEYOND 5G NR AIR INTERFACE: URLLC AND POWER CONSUMPTION (2/2)

	Release 15	Release 1	6	Re	eleas	e 17	Re	elea	se 1	8	F	Rele	ase	19	
	BWP switching	SCell dorma	nancy PI		PDCCH skipping			enhanced cDRX							
	Downlink	Cross-slot sche	duling	uling				Retransmission-less			and the				
	Preemption	PDCCH Wake-up signa		al			configured grant			Co	Consolidation of				
	Uplink skipping	Uplink configure	d grant	t 🔪 🔎	$\langle \rangle$		Low latency mobility			plenary in					
	Mini-slot transmissions	Slot aggregat	tion			XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Qo multir	S-ba nedia	sed o a pay	on Ioad		202	3		
	6.6.5 6.6.6	Uplink preemption					XR awareness			Ť				\otimes	
0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			233						H	1-FH-HK			<u>``</u> ,	
6 			2022			2023		2024				2025			
	@@@@@@@@		Q2	Q3 Q	4 Q1	Q2 C	23 Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
				Rel-18 RAN1		Mainte nance		F	Rel-19 RAN		N1 Main		Mainte nance		
Combination of 3GPP features				Rel-1	8 RAN2/	3/4	Mainte naise	ASN.1 freeze		Re	l-19 R	AN2/3	3/4	ASN.1 freeze	
Combination of 3GPP features and other tools, e.g., L4S protocol, Box Signaling Tester Box Signaling Tester					Y	ou are	here	$\overset{\circ}{\boxtimes}$,						

R&S® 5G One

THE CURRENT CHALLENGE WITH cDRX SINGLE STREAM DOWNLINK TRAFFIC

Characterized by

- Packet size
- Packer arrival rate
- Packet success rate
- Packet delay budget (PDP)

Video frame rates correspond to a periodicity that is <u>not</u> an integer and thus does not align with frame a slot durations

TABLE I 3GPP TRAFFIC MODEL PARAMETERS AND REQUIREMENTS FOR SELECTED XR USE CASES.

	_						
Traffic stream	DL/ UL	Use cases	Packet rate	Average data rate	Packet size	Jitter	PDB
Video	AR 60 fps, [30,90,120] fps 30 Mbit/s, 45 Mbit/s, [60 Mbit/s] Truncated Gaus Mean = Av. data (fps * 8) bytes,		Truncated Gaussian, Mean = Av. data rate / (fps * 8) bytes.	Truncated Gaussian, Mean = 0 ms Standard deviation (STD) = 2 ms [Min, Max] = [-4, 4] ms or [-5, 5] ms	10 ms		
		CG		8 Mbit/s, 30 Mbit/s, [45 Mbit/s]	[STD, Min, Max] =		15 ms
		AR	60 fps	10 Mbit/s, [20 Mbit/s]	[10.5%, 50%, 150%] of mean	Optional, same as for DL	30 ms
Motion/ control		VR CG	250 fps	0.2 Mbit/s	100 bytes	No	10 ms
Audio +Data	DL+ UL	AR/VR/CG in DL, AR in UL	100 fps	0.756 Mbit/s, 1.12 Mbit/s	Av. data rate / (fps*8) bytes		30 ms
If multiple values given hold are default values							

Source: Standardization of Extended Reality (XR) over 5G and 5G-Advanced 3GPP New Radio

ENHANCED cDRX FOR EXTENDED REALITY

As showcased at Mobile World Congress Barcelona and Shanghai 2023

LET'S GET OUR TOES WET PROTOTYPE OF LAB-BASED XR TESTBED AND TEST SUITE

R&S®ATS1800C

Contraction of the Contraction of the

USB-C tethering

5G wearable

(future: WIFI7)

Artificial Head on 3D positioner to

emulate almost 6DoF

Compact 3GPP-compliant

OTA chamber for 5G NR mmWave signals

XR Client

App

Head Mounted

Display (HMD)

or AR glasses

A lab-based testbed to test XR applications over 5G NR (or WiFi) from an E2E perspective:

R&S®CMX500

5G One Box Signaling Tester

- RF conditions thresholds are met, which forces the app to render locally instead of offloading to the cloud
- Emulate realistic traffic models and patterns based on industry feedback; scheduling scenarios (e.g., delayaware scheduling to meet latency requirements)
- Mobility aspects, e.g., handover

₿€

IP

connection

MEC

Server

Lab-based 5G testbed for testing extended reality (XR) from an End-to-End (E2E) perspective

PROTOTYPE OF LAB-BASED XR TESTBED AND TEST SUITE DEMO1: 360 4K VIDEO WITH SLALOM

PROTOTYPE OF LAB-BASED XR TESTBED AND TEST SUITE CONFIGURATION AND AUTOMATION OF TESTBED & XR USE CASE

R&S@CMX500 R&S@ATS1800C 5G One Box Signaling Tester Compact 3GPP-compliant OTA chamber for 5G NR mmWave signals

1) Link to CMsequencer brochure

WHAT ARE THESE USE CASES? 3GPP TR 26.928 V18.0.0 (2023-03)

Core Use Cases and Scenarios	Clause	Use Case from Annex A
Offline Sharing of 3D Objects	5.2	Use Case 1: 3D Image Messaging Use Case 2: AR Sharing Use Case 10: Online shopping from a catalogue – downloading
Real-time XR Sharing	5.3	Use Case 7: Real-time 3D Communication Use Case 8: AR guided assistant at remote location (industrial services) Use Case 11: Real-time communication with the shop assistant Use Case 17: AR animated avatar calls Use Case 23: 5G Shared Spatial Data
XR Multimedia Streaming	5.4	Use Case 3: Streaming of Immersive 6DoF Use Case 4: Emotional Streaming Use Case 20: AR Streaming with Localization Registry Use Case 21: Immersive 6DoF Streaming with Social Interaction
Online XR Gaming	5.5	Use Case 5: Untethered Immersive Online Gaming Use Case 6: Immersive Game Spectator Mode Use Case 22: 5G Online Gaming party
XR Mission Critical	5.6	Use Case 9: Police Mission Critical with AR
XR Conference	5.7	Use Case 12: 360-degree conference meeting Use Case 13: 3D shared experience Use Case 14: 6DOF VR conferencing Use Case 15: XR Meeting Use Case 16: Convention / Poster Session
Spatial Audio Multiparty Call	5.8	Use Case 18: AR avatar multi-party calls Use Case 19: Front-facing camera video multi-party calls

THANK YOU! QUESTIONS?

"No one can whistle a symphony. It takes a whole orchestra to play it."

Halfrod E. Luccock (1885-1960)

