RF Fundamentals Seminar Part 3: RF Components and Measurements

ROHDE&SCHWARZ

Make ideas real

RF Components and Measurements

- ► Topics
 - Reflection and Transmission
 - Smith Chart
 - S-Parameters
 - Instrument Measurements
 - Components

RF Device Characterization

Measurement – 1 Port and 2 Port

(R)

Transmission Parameters

Reflection Parameters

*Scalar Reflection Coefficient (ρ), Return Loss, and VSWR are calculated from measured Vector Reflection Coefficient (Γ)

RF Fundamentals - Part 3 - RF Components and Measurements

- ▶ Published by Phillip H. Smith of Bell Labs in 1939
- Plot of normalized complex impedances
 - $\mathbf{z} = \mathbf{r} + \mathbf{j}\mathbf{x}$ where $\mathbf{z} = \mathbf{Z}_L / \mathbf{Z}_0$
 - \mathbf{r} = real component, resistance (r = 1 = 50/50)
 - **x** = imaginary component, reactance
- Used extensively in impedance matching

Matching Basic

(BS)

Measurement – 1 Port and 2 Port

(R)

S-Parameters

S-Parameters (Scattering-Parameters) represent the relationship between scattered waves (a, b)

- S-Parameters are dimension free (units disappear but often display as magnitude in dB)
- S-Parameters represent reflection and transmission coefficients
- I These coefficients are based on a defined characteristic impedance (usually 50 ohms)
- Displayed as S_{xv} where x is measurement port and y is the stimulus port

Measurement – 1 Port and 2 Port

(R)

Instrument – Vector Network Analyzer (VNA)

(R)

Instrument – Vector Network Analyzer (VNA)

(BE)

VNA – S-Parameters

Filter Measurement New Rew Trace Ch + Tr 🔲 Delete 📝 New Marker Display ransmission S21 dB Mag 10 dB/ Ref 0 dB Cal Reflection S11 dB Mag 10 dB/ Ref 0 dB Cal 1) dB Return $S_{21} = \frac{b2}{a1}$ Gain $S_{11} = \frac{b1}{a1}$ Loss the Mill marks Mr. M. TALLARD ADD NICH M Chil Start 500 MH Pwr 0 dBm Bw 10 kH Stop 3 GHz Ch1 Start 500 MH Pwr 0 dBm Bw 10 kHz Stop 3 GHz a1(P1) dB Mag 10 dB/ Ref 0 dBm Reflected b1(P1) dB Mag 10 dB/ Ref 0 dBm Transmitted b2(P1) dB Mag 10 dB/ Ref 0 dBm Incident had Wave: a1, b1, b2 ADD M A. DA 10 h b1 Start 500 MHz Pwr 0 dBm Bw 10 kHz Stop 3 GHz Ch1: Avg 10:39:47 PM File Trace Channel Display Application System Help

VNA – Transmission Measurement

<u>(</u>)

VNA – Reflection Measurement

Input Phase

20

RF Fundamentals - Part 3 - RF Components and Measurements

VNA – Reflection Measurement

RF Fundamentals - Part 3 - RF Components and Measurements

VNA – Measurement Ripple?

RF Fundamentals - Part 3 - RF Components and Measurements

1 Max

ΛΛΛΛ

Stop 20 GHz

VNA – Standing Waves

24

Components

Components – Change the Signal or Signal path. **Transmission Lines** – Transport signals, can be a component.

Two basic types of components Passive – Change Signal without external power

Active – Require external power to change signal

Common Components

Common Passive Components

- Transmission Line
- Attenuators
- Filters
- Couplers
- Combiners
- Power dividers
- Antennas
- Circulator
- Isolators
- Duplexers and Diplexers
- Mixers

Low noise amplifiers

Power amplifiers

Common Active Components

Oscillators

Switches

Mixers

Active Components

Common Active Components Measurements

- Gain
- Pass band flatness (amplitude and group delay)
- Bandwidth
- Isolation
- 1 dB compression (could be .1 dB, 3 dB, etc)
- Harmonics
- TOI (3rd order distortion)
- Noise figure

Components – Mixers

- Mixers change the frequency of signal while preserving other characteristic such as amplitude and phase.
- Common Mixer Frequency Setups
 - Fixed RF, Swept LO and IF
 - Fixed LO, Swept RF and IF
 - Fixed IF, Swept LO and RF (used in spectrum analyzers)
- Upconversion
 - Output frequency is higher than Input frequency
- Downconversion
 - Output frequency is lower than Input frequency

Components – Mixers

Common Mixer Measurements

- Conversion Loss
- Image rejection
- LO-IF isolation
- RF-IF isolation
- Pass band flatness (amplitude and group delay)
- Harmonics and 3rd order products
- Group delay

• 4-port VNA can simplify the characterized of a mixer

Connectors

- Connectors are selected for frequency range, quality, and ruggedness.
- Can connectors cause mismatch?

Connector Frequency Ranges

(%)

Connector Construction

Connector Compatibility

SMA, 3.5 mm, and 2.92 mm connectors are mechanically compatible and can be mated interchangeably. 2.4 mm and 1.85 mm connectors are also mechanically compatible.

*Recommend using Male of high frequency connector because of higher precious to inner pin structure. *Example: Male 3.5 mm with Female SMA*

Recommended Torque for Common Connectors

Connector	Torque (in-lb)
Type N	13.3
SMA	5
3.5 mm	8
2.92 mm	8
2.4 mm	8
1.85 mm	8
1.0 mm	4

Connectors – Proper Mating Technique

1. Align

- DON'T TURN CABLE
- Turn only the coupling nut!!
- If you feel resistance, disconnect and inspect connectors
- Be sure to keep the body of the female connector stable
- Continue until finger tight

3. Proper Torque

Recap – RF Components and Measurements

- ► There are two main type of components measurements: **Reflection** and **Transmission**
- There are many ways to display the same measurement; some display opposite values for the same measurement. Reflection Coefficient (r) = 0 is same as VSWR =1
- Smith Chart plots the normalized impedance and is useful tool for matching impedance.
- ► VNA (Vector Network Analyzer) is the primary instruments for components measurements.
- ► S-Parameters are use for majority of the measurement on a VNA.
- ► Two main type of components, **Passive** and **Active**; Active components require external power.
- Connector are components and can could same mismatch issue as other components.

Thank you for Attending

RF Fundamentals:

SIX-PART WEBINAR SERIES

Part 3: RF Components and Measurements