RF Fundamentals Seminar Part 6: Vector Signal Analysis and Intro to OFDM

ROHDE&SCHWARZ

Make ideas real

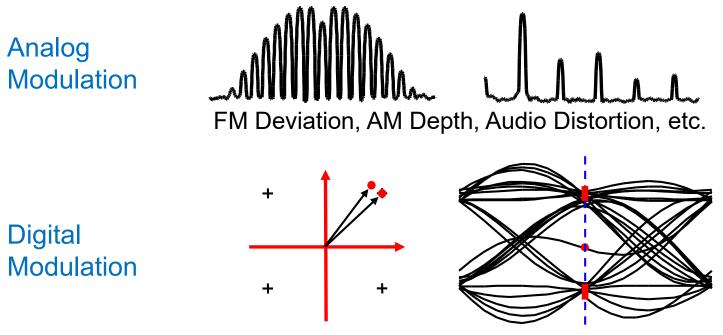
Today's Presenter

- Greg Vaught
- ► Rohde & Schwarz application engineer for 14 years
- Based in Illinois, covering the territory of the central part of the US
- Supports Signal Generators, Spectrum Analyzers, Vector Network Analyzers, and Power Meters
- Email: gregory.vaught@rsa.rohde-schwarz.com

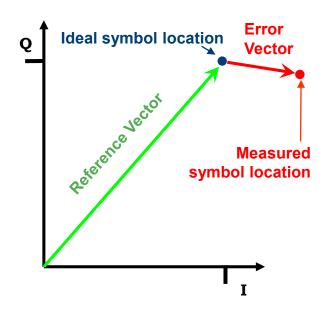
Agenda – RF Fundamentals Part 6

► Vector Signal Analysis

- Vector Signal Analysis Demonstration
- ► Introduction to OFDM


Measuring Digitally Modulated Signals

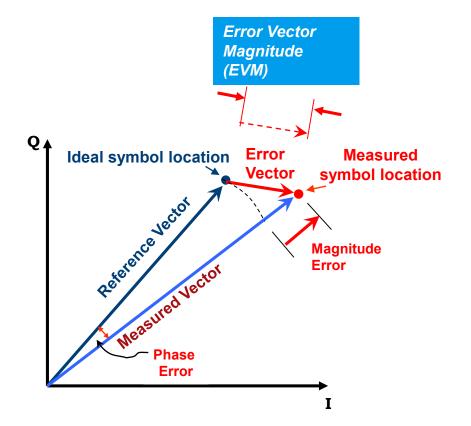
- ► Can I use a basic Spectrum Analyzer to measure modulation quality?
- No. A spectrum analyzer can measure power, occupied bandwidth, and spectral purity, but to measure modulation quality you need a Vector Signal Analyzer (VSA)
- ► Is a VSA a completely separate instrument?
- No. It's usually an option to a spectrum analyzer
 - It uses an IQ digitizer and demodulator which are not generally used in spectrum analysis
 - It adds software with sophisticated algorithms to synchronize to the signal and measure it
- ▶ What are the key parameters to consider in a VSA?
- Bandwidth (maximum symbol rate) and Inherent Modulation Quality of the instrument. These two characteristics typically divide VSA into classes: High-end, mid-range, etc.


Modulation Quality Measurements

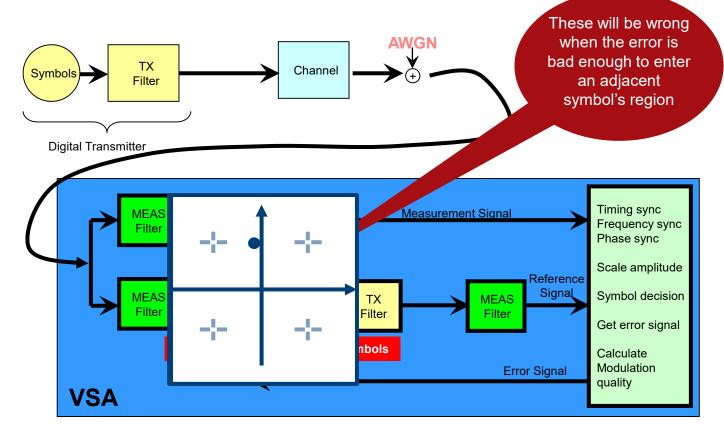
EVM, rho, I-Q offset (carrier feedthrough), etc.

What is EVM?

- EVM is the single most measured quantity on digitally modulated signals
- The 'reference vector' represents the ideal symbol location in the IQ plane
- The error vector is the vector between the ideal symbol location and the measured symbol location
- EVM is the ratio of the error vector to the reference vector
- ► EVM is this ratio expressed as % or dB
 - EVM (%) = | error / ref | x 100
 - EVM (dB) = 20 log (| error / ref |)


What is EVM?

- EVM can be broken down into its components of Magnitude Error and Phase Error
- The relative contribution of these components can aid in troubleshooting EVM issues

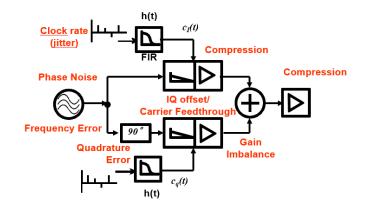

		Current	Peak	Ur
EVM	RMS	0.19	0.22	9
	Peak	0.43	0.56	9
MER	RMS	54.65	53.34	d
	Peak	47.36	45.05	Ь
Phase Error	RMS	0.08	0.09	de
	Peak	-0.23	0.32	de
Magnitude Error	RMS	0.13	0.16	9
	Peak	0.36	0.52	9

MER (Modulation Error Ratio) is EVM expressed in dB

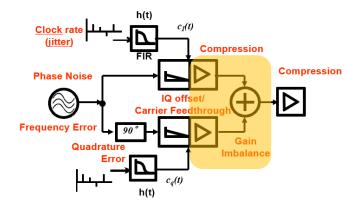
Example: EVM = 1% = -40 dB → MER = 40 dB

VSA: Block Diagram

(\$\$)

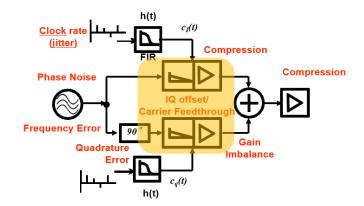

Sources of Modulation Error

In-Band Spurious


- Spurious CW signal within the channel bandwidth will cause the constellation points to have a 'donut' shape
- Easy to identify in constellation diagram
- Typical source is switching power supply clock or other oscillator in the DUT leaking into the IQ modulator

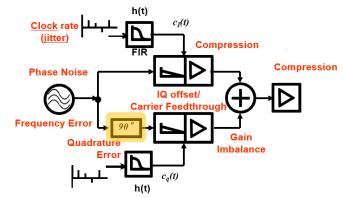
2 Result Summa	ry				1 Const I/Q(Meas&Ref)	●1M Clrw
		Current	Peak	Unit		
EVM	RMS	9.95	10.02	%		-20 dBc
	Peak	12.06	13.02	%		-20 uDC
MER	RMS	20.05	19.98	dB	_	
	Peak	18.37	17.71	dB	(*)	
Phase Error	RMS	4.02	4.08	deg		
	Peak	6.46	-6.80	deg		
Magnitude Error	RMS	7.07	7.15	%		
-	Peak	-11.40	-12.29	%		
Carrier Frequency	/ Error	-4.96	-8.40	Hz		
Symbol Rate Erro	r	-9.67	-28.61	ppm		
I/Q Skew				ps		
Rho		0.990 125	0.990 046			
I/Q Offset		-50.13	-49.37	dB	💮 💮 💮	*
I/Q Imbalance		-54.68	-54.20	dB		
Gain Imbalance		0.03	0.03	dB		
Quadrature Error		0.07	0.22	deg		
Amplitude Droop		-0.000 10		dB/sym		
Power		0.86	0.91	dBm	-2,48	2,48

IQ Gain (or Amplitude) Imbalance


Caused by unequal gain between I and Q paths

2 Result Summa	iry				1 Const I/Q(Meas&Ref) • 1M Clrw
		Current	Peak	Unit	O lovel 1dP bigher then I lovel
EVM	RMS	5.73	5.73	%	Q level 1dB higher than I level
	Peak	7.97	8.04	%	
MER	RMS	24.84	24.84	dB	
	Peak	21.97	21.89	dB	
Phase Error	RMS	2.71	2.72	deg	
	Peak	-3.88	-3.90	deg	_اب _اب _اب
Magnitude Error	RMS	3.22	3.29	%	
_	Peak	5.05	5.07	%	
Carrier Frequency	y Error	-3.04	-3.06	Hz	
Symbol Rate Erro	or in the second s			ppm	
I/Q Skew				ps	
Rho		0.996 734	0.996 729		
I/Q Offset		-60.78	-60.70	dB	
I/Q Imbalance		-24.85	-24.84	dB	
Gain Imbalance		1.00	1.00	dB	
Quadrature Error		0.06	0.06	deg	
Amplitude Droop		0.000 000	0.000 001	dB/sym	
Power		0.14	0.18	dBm	-2.48 2.48

IQ Offset (Carrier Feedthrough)

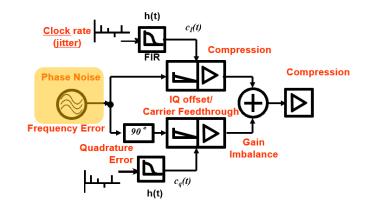

- IQ Offset results in the whole constellation being offset in the I and/or Q direction
- ► IQ Offset is caused by small DC levels at the I/Q modulator
- Low levels of offset are not visually obvious, but are measured down to very low levels in the Result Summary

2 Result Summa	ry				1 Const I/Q(Meas&Ref) • 1M Clrw
		Current	Peak	Unit	All constellation points offset
EVM	RMS	10.58	10.66	%	All constellation points onset
\mathbf{k}	Peak	11.02	11.10	%	
MER	RMS	19.51	19.44	dB	
	Peak	19.16	19.10	dB	
Phase Error	RMS	6.02	6.04	deg	
	Peak	-13.19	-13.24	deg	
Magnitude Error	RMS	7.41	7.57	%	
-	Peak	10.87	10.93	%	
Carrier Frequency	y Error	-3.03	-3.07	Hz	
Symbol Rate Erro	or in the second s			ppm	
I/Q Skew				ps	
Rho		0.988 943	0.988 742		
I/Q Offset		-19.51	-19.44	dB	
I/Q Imbalance		-67.66	-66.36	dB	
Gain Imbalance		0.00	0.01	dB	
Quadrature Error		0.04	0.04	deg	
Amplitude Droop		0.000 001	0.000 001	dB/sym	
Power		-0.19	-0.14	dBm	-2.48 2.48


Quadrature Error

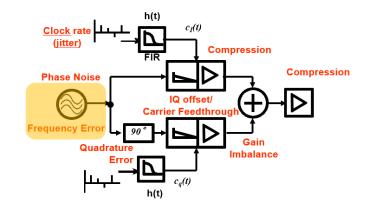
- Quadrature error results when the angle between I and Q is not 90 degrees
- This impairment changes the constellation from a square to a parallelogram
- Quadrature error is most easily seen in the Result Summary

I/Q Skew ps Rho 0.992 307 0.992 307 I/Q Offset -56.02 -55.87 dB	O1M Clrw
Peak 12.21 12.27 % MER RMS 21.12 21.12 dB Peak 18.27 18.22 dB Phase Error RMS 2.85 2.89 deg Peak -4.52 -4.53 deg -1 Magnitude Error RMS 7.26 7.29 % Peak 12.21 -12.27 % Carrier Frequency Error -3.07 -3.11 Hz Symbol Rate Error	
MER RMS 21.12 21.12 dB Peak 18.27 18.22 dB Phase Error RMS 2.85 2.89 deg Magnitude Error RMS 7.26 7.29 % Peak 12.21 -12.27 % Carrier Frequency Error	
Peak 18.27 18.22 dB Phase Error RMS 2.85 2.89 deg Peak -4.52 -4.53 deg -1 -1 Magnitude Error RMS 7.26 7.29 % -1 -1 Carrier Frequency Error -3.07 -3.11 Hz -1 -1 -1 Symbol Rate Error ppm -1	B
Peak 18.27 18.22 dB Phase Error RMS 2.85 2.89 deg Peak -4.52 -4.53 deg -1 -1 Magnitude Error RMS 7.26 7.29 % -1 -1 Carrier Frequency Error -3.07 -3.11 Hz -1 -1 -1 Symbol Rate Error ppm -1 -1 -1 -1 I/Q Skew ps -1 </th <th></th>	
Peak Magnitude Error Peak RMS -4.52 7.26 -4.53 7.29 deg % Carrier Frequency Error Symbol Rate Error -3.07 -3.11 Hz I/Q Skew	
Magnitude Error RMS 7.26 7.29 % Peak 12.21 -12.27 % Carrier Frequency Error -3.07 -3.11 Hz Symbol Rate Error ppm I/Q Skew 0.992 307 0.992 307 I/Q Offset ps	
Peak 12.21 -12.27 % Carrier Frequency Error -3.07 -3.11 Hz Symbol Rate Error ppm I/Q Skew ps Rho 0.992 307 0.992 307 dB I/Q Offset -56.02 -55.87 dB	l I I I I I I I I I I I I I I I I I I I
Carrier Frequency Error -3.07 -3.11 Hz Symbol Rate Error ppm ppm I/Q Skew ps pr Rho 0.992 307 0.992 307 db db I/Q Offset ps	-,,-
Symbol Rate Error ppm I <thi< th=""> <thi< th=""></thi<></thi<>	
I/Q Skew ps ps Rho 0.992 307 0.992 307 PS PS PS PS PS PS PS PS PS PS <t< th=""><th></th></t<>	
I/Q Skew ps Rho 0.992 307 0.992 307 I/Q Offset -56.02 -55.87 dB	
I/Q Offset -56.02 -55.87 dB	
I/Q Imbalance -21.12 -21.12 dB	1
I/Q Imbalance -21.12 -21.12 dB Gain Imbalance 0.00 0.00 dB	
Quadrature Error 10.04 10.05 deg	
Amplitude Droop 0.000 001 0.000 001 dB/sym	
Power -0.28 -0.20 dBm -2,48	2.48


Low Signal to Noise Ratio SNR: 20 dB

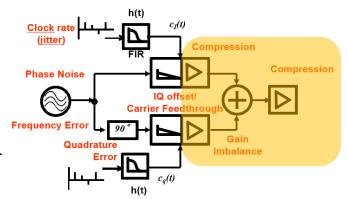
2 Result Summa	ry			_	1 Const I/Q(Meas&Ref)	O1M Clrw
		Current	Peak	Unit		
EVM	RMS	9.77	10.22	%		
	Peak	27.97	35.46	%	the sheet lake like	
MER	RMS	20.20	19.81	dB		
	Peak	11.07	9.01	dB		
Phase Error	RMS	5.72	5.88	deg		
	Peak	-25.78	-34.49	deg	aller all all the	
Magnitude Error	RMS	6.85	7.33	%		
	Peak	23.76	-34.60	%		
Carrier Frequency		-1.37	-5.04	Hz		
Symbol Rate Erro	or			ppm	and the set with the	
I/Q Skew				ps		
Rho		0.990 527	0.989 678			
I/Q Offset		-47.52	-39.96	dB		
I/Q Imbalance		-65.46	-42.31	dB	and the select the	
Gain Imbalance		0.01	0.05	dB		
Quadrature Error		0.00	0.88	deg		
Amplitude Droop		-0.000 01	0.000 109	dB/sym		
Power		-0.01	0.03	dBm	-2.48	2.48

Phase Noise


- ► Phase noise forms arcs of noise at the symbol points
- Caused by high phase noise in LO/carrier
- Also indicated by high Phase Error value (relative to Mag Error)

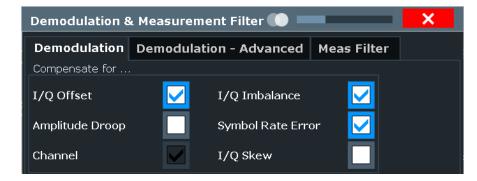
2 Result Summa	iry				1 Const I/Q(Meas&Ref)	o1M Clrw
		Current	Peak	Unit		
EVM	RMS	4.14	4.69	%		
	Peak	17.70	19.64	%		
MER	RMS	27.66	26.58	dB		
	Peak	15.04	14.14	dB		
Phase Error	RMS	2.33	2.68	deg		
	Peak	-8.07	-8.60	deg		
Magnitude Error	RMS	0.45	0.46	%		
-	Peak	1.57	2.44	%		
Carrier Frequency	y Error	-1.61	-5.71	Hz		
Symbol Rate Erro	o r			ppm	i i j j j	
I/Q Skew				ps		
Rho		0.998 292	0.997 806			
I/Q Offset		-58.01	-50.05	dB		
I/Q Imbalance		-56.87	-50.57	dB	S	
Gain Imbalance		0.01	0.04	dB		
Quadrature Error		0.16	0.23	deg		
Amplitude Droop		0.000 007	0.000 007	dB/sym		
Power		-0.18	-0.06	dBm	-2.48	2.48
					-2.40	2,40

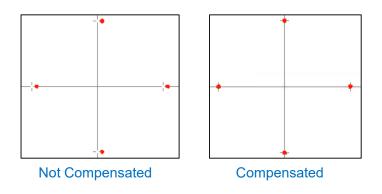
Carrier Frequency Error


- Carrier frequency error is simply the difference between the actual and the intended output center frequency
- ► Caused by error in the DUT's frequency reference
- Frequency error is not visible in the constellation and must be read in the Result Summary

2 Result Summa	ry				1 Const I/Q(Meas&Ref)	O1M Clrw
		Current	Peak	Unit	Constellation looks ideal	
EVM	RMS	0.26	0.26	%		
	Peak	0.59	0.62	%		
MER	RMS	51.87	51.81	dB		
	Peak	44.51	44.17	dB		
Phase Error	RMS	0.14	0.14	deg		
	Peak	-0.73	-0.75	deg		
Magnitude Error	RMS	0.19	0.19	%		
_	Peak	0.51	0.54	%		
Carrier Frequency	/ Error	-5003.43	-5003.46	Hz		
Symbol Rate Erro	or			ppm		
I/Q Skew				ps		
Rho		0.999 993	0.999 993			
I/Q Offset		-58.73	-58.44	dB		
I/Q Imbalance		-65.02	-64.84	dB		
Gain Imbalance		0.01	0.01	dB		
Quadrature Error		0.05	0.05	deg		
Amplitude Droop		0.000 000	0.000 002	dB/sym		
Power		-0.32	-0.26	dBm	-2.48	2,48

Compression

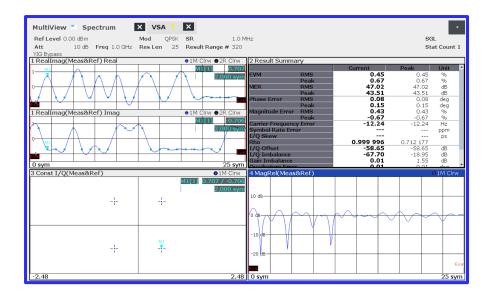

- Compression has a subtle effect in the constellation the outermost symbols (those with the highest power level) are smeared toward the origin
- Compression can result from overdriving the IQ modulator or output amplifier



2 Result Summa	ry				1 Const I/Q(Meas&Ref)	O1M Clrw
		Current	Peak	Unit		
EVM	RMS	1.85	1.85	%		
	Peak	24.90	24.90	%		
MER	RMS	34.65	34.65	dB		
	Peak	12.08	12.08	dB		
Phase Error	RMS	0.48	0.48	deg		
	Peak	-5.45	-5.45	deg		
Magnitude Error	RMS	1.69	1.69	%		
-	Peak	-24.51	-24.51	%		
Carrier Frequency	y Error	-3.34	-3.34	Hz		
Symbol Rate Erro	or			ppm		
I/Q Skew				ps		
Rho		0.999 655	0.999 655			
I/Q Offset		-62.49	-62.49	dB		
I/Q Imbalance		-76.68	-76.68	dB		
Gain Imbalance		0.00	0.00	dB		
Quadrature Error		0.02	0.02	deg		
Amplitude Droop		0.000 000		dB/sym		
Power		17.02	17.02	dBm	-2.48	2.48

The VSA Can Compensate Some of these Errors

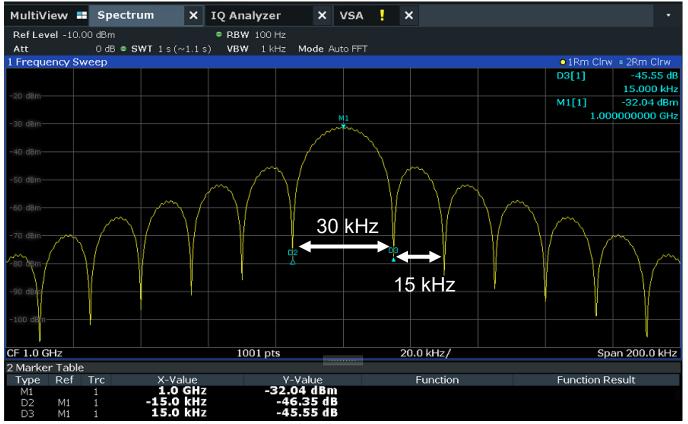
- ▶ Why do this, isn't it cheating?
- ► If you expect your receiver will do this, then it makes sense to also compensate it with the VSA
- ► Note these are systematic, predictable errors


Example: IQ Offset of 2.5%

Agenda – RF Fundamentals Part 6

- Vector Signal Analysis
- Vector Signal Analysis Demonstration
- ► Introduction to OFDM

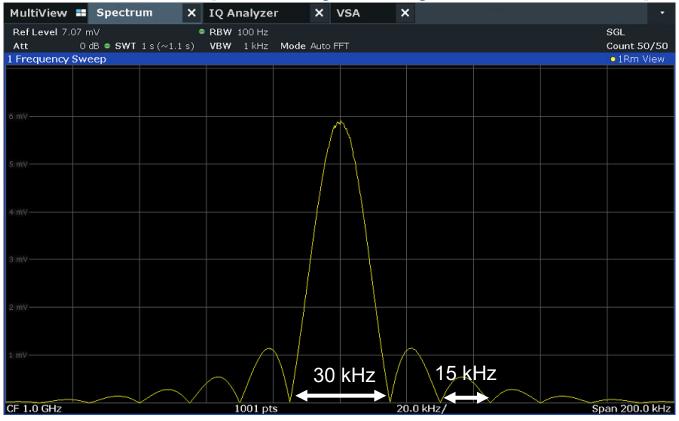
Vector Signal Analysis


Demo Time!

Agenda – RF Fundamentals Part 6

- Vector Signal Analysis
- Vector Signal Analysis Demonstration
- Introduction to OFDM

Remember the Rectangular Filter?

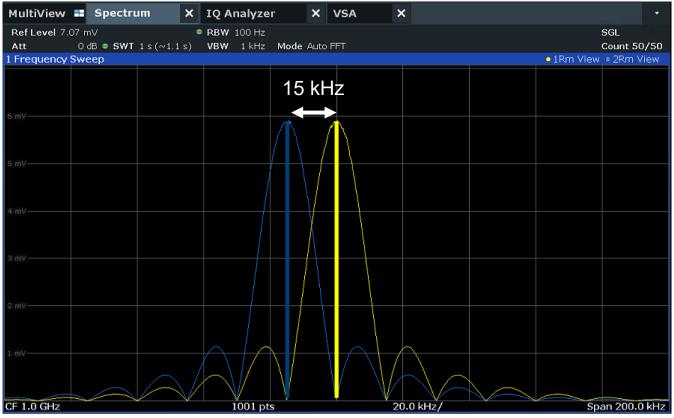


Signal Properties:

QPSK Modulation Rectangular Filter Symbol rate 15 ksps

sin (x) / x shape

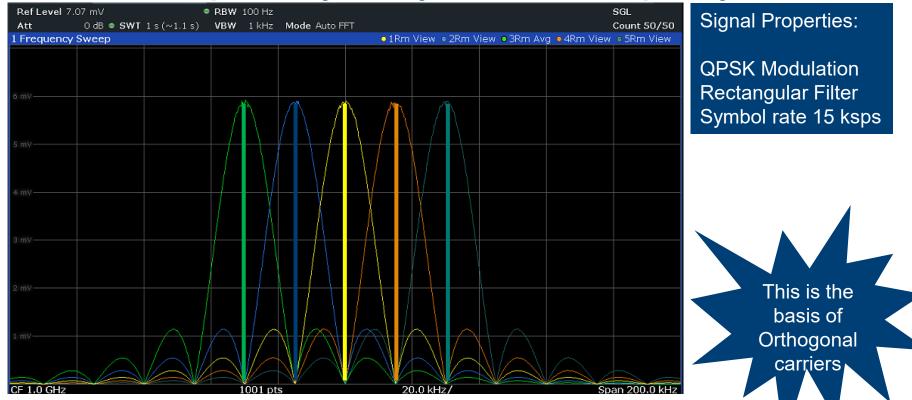
Two Carriers Spaced by the Symbol Rate Frequency



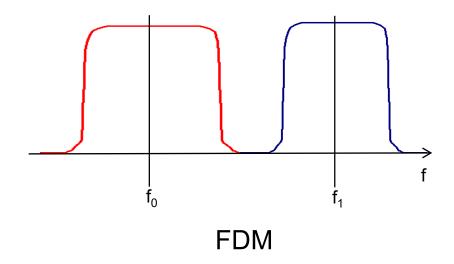
Signal Properties:

QPSK Modulation Rectangular Filter Symbol rate 15 ksps

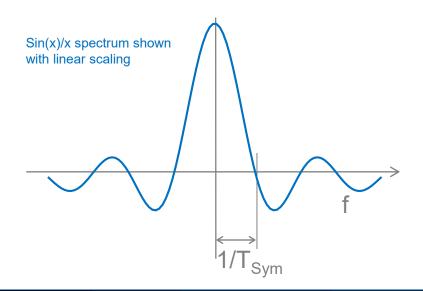
Switched to a linear scale

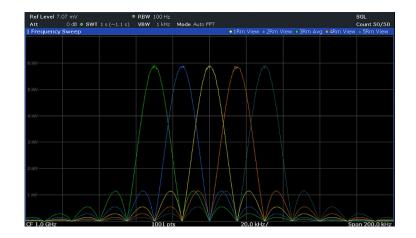

Two Carriers Spaced by the Symbol Rate Frequency

Signal Properties:


QPSK Modulation Rectangular Filter Symbol rate 15 ksps

Five Carriers Spaced by the Symbol Rate Frequency


OFDM: What is Orthogonal?


- ► FDM: Frequency Division Multiplexing
- Conventional FDM System: Space carriers sufficiently to avoid interference

OFDM: What is Orthogonal?

- Orthogonal Frequency Division Multiplexing
- ► Use properties of sin(x)/x characteristic

Where is OFDM Used?

- ► Cellular:
 - LTE (4G)
 - 5G New Radio
- ▶ WiFi Standards (IEEE 802.11)
- Terrestrial Radio
 - HD Radio
 - DAB (Digital Audio Broadcasting)
- Terrestrial Television
 - DVB-T (Digital Video Broadcasting Terrestrial)
 - ATSC 3.0 (Advanced Television Standards Committee)
- DOCSIS 3.1 (Latest generation Cable Standard)

Example: 100 MHz 5G NR Signal

MultiView 📑	Spectrum	×	IQ Analy	zer	×	VSA >	Spectrum 2	×				
Ref Level -1		WT 500 -		100 kHz								
Att Frequency		WI SUU n	ns VBW	I™HZ	Mod	e Auto Sweep)					• 1Rm Clrv
riequency				an a								
30 dBm												
				-	mpropropersy	*****						
-60 dBm												
										}		
-90 dBm												
										maine	an photos and	man to the have
	lannah my Mr 1	want	ed.							- 1 -W 0 - 1-	a construction of the second s	
F 3.5 GHz				100	1 pts		2	0.0 MHz/				oan 200.0 M
0.0 0112						varming up			and the second second	1. Mar. 1. Mar.		27.04.20 15:53:

5G NR Signal Example: 3275 Data carriers Spaced by 30 kHz Total bandwidth ~ 98.25 MHz

15:53:23 27.04.2020

Agenda – RF Fundamentals Part 6

- Vector Signal Analysis
- Vector Signal Analysis Demonstration
- Introduction to OFDM

