6G SPECTRUM AND WAVEFORMS: ENABLING THE NEXT GENERATION OF WIRELESS

Mike Wu Application Engineer

ROHDE&SCHWARZ

Make ideas real

Agenda

Introduction

► 6G Roadmap

- ► 6G Technology & Application
- ► 6G Spectrum Resource
- ► 6G Modulation and Waveforms
- Conclusions

3GPP standardization and regulation On the way towards planned 6G launch in 2030

THz communication, and "FR3"

Integrated sensing & communication

Satellite Non-Terrestrial Network

Ultra-massive MIMO

Artificial Intelligence and Machine Learning

Reconfigurable Intelligent Surfaces

A high-level overview of all these research areas is provided in one of our <u>#THINKSIX</u> videos

Heading towards the future of wireless communication Technology cornerstones

SPECTRUM RESOURCE

6G will deliver ultra-fast data connections (sub)-THz was initially of interest and is still researched ...

Hexa-X project Use cases for upper & lower mmWave frequencies

Source: https://hexa-x.eu/wp-content/uploads/2021/08/D2.1-summary-slides-short.pdf

One sub-THz waveform example "<u>A concept for evaluating sub-THz communication for future 6G</u>"

- ► TDD / DFTs-OFDM low latency approach without real frame structure, rather TDD period based.
- ► High SCS (1920 kHz) to support large bandwidth and to handle phase noise.

Transport-channel processing

One sub-THz waveform example

"A concept for evaluating sub-THz communication for future 6G"

Three example
configurations are
described reflecting DL
heavy, balanced and UL
heavy traffic patterns.

Ratio	Downlink	Guard	Uplink					
	Ldl	Lgi	L UL,1	L UL,2	L _{UL,3}			
			(no PRACH, no SSB)	(SSB)	(PRACH)			
3:1	140	12	56	42	32			
1:1	90	12	106	92	82			
1:3	48	12	148	134	124			

... but the commercial 6G spectrum interest is cm-wave Focus is on upper mid-band ~ 6 GHz to 15 GHz

Rohde & Schwarz

Operators view on 6G spectrum Some examples

COMPANY RESTRICTED

Rohde & Schwarz

Operators view on 6G spectrum Some examples

Need for higher bandwidth (e.g. 200 MHz) and higher number of MIMO layers in 6 GHz at least

Operators view on 6G spectrum Some examples

Agility of software on a stable, scalable, "generation-free" network that integrates new hardware driven by needs

COMPANY RESTRICTED

kt

275GHz

6G WAVEFORM

6G waveform proposals <u>6GWS-250036</u> Frequency-domain spectrum shaping (FDSS) in UL

6G waveform proposals: <u>6GWS-250026</u> Orthogonal Time Frequency Division Multiplexing (OTFDM)

Time Division Multiplexing in one Symbol

- Time multiplexing of Data and Control & DMRS with DMRS CP
- Instantaneous Channel Estimation with low DMRS overhead
- Information transfer in one shot with the Least Possible Latency

DFT Excess BW Spectrum Shaping Filter

- Nyquist Criterion for Zero ISI
 - Excess BW signal shaping Controls the ISI caused by the pulse, reduces the tails of the ISI channel power to a below-noise floor, Reduces Effective ISI channel length, Enables DMRSbased estimation of the effective ISI channel
 - Excess BW reduces PAPR further

•

OTFDM achieves the targets: low PAPR, Hyper low-latency

Standard OFDM Operations

- Subcarrier mapping enables the multiplexing of multiple users/signals
- CP to offer frequency domain receiver processing
- Same spectral properties as OFDM WOLA/filter for spectral confinement

OTFDM publication pre-print https://arxiv.org/abs/2409.01114

Enables multi-user multiplexing in time/frequency Applicable in UL/DL

6G waveform proposals <u>6GWS-250233</u> Zak-OTFS (Orthogonal Time Frequency Space) modulation

- ► For TDM and FDM the signal is localized in time or in frequency → time selective or frequency selective fading
- Idea: Go to the Delay-Doppler (DD) domain
- Doppler Delay Modulation (DDM)
 - Information is carried over DD domain pulse
 - Delay period τ_p ; Doppler period $v_p = \frac{1}{\tau_p}$
 - Zac transform z_t , used to transform the DD signal to a TD signal x(t)

Ref: R1-1609825 3GPP TSG RAN WG1 Meeting #86bis, 2016

COMPANY RESTRICTED

 $|h_4|$

Delay (T)

6G waveform at cm-wave spectrum MRSS motivates similarity with 5G NR

- Clear requirement to allow 6G SA operation in existing FR1 spectrum
- Potential solution: Multi-RAT Spectrum Sharing with focus on 5G/6G MRSS
- Based on similar principles than DSS in 5G/4G but leveraging 5G flexibility for always on signals

Source: Nokia white paper on <u>"Simplifying spectrum migration from 5G to 6G</u>"

Chair's summary of the 3GPP WS on 6G radio interface (6GWS-250243): "Non-backwards compatible (from a UE perspective) to exploit full potential, with certain characteristics (e.g. waveform, modulation and channel coding) based on 5G NR with possible enhancements."

6G waveform at cm-wave spectrum Evolution of modulation: Super-QAM

 Qualcomm video on "Super-QAM" to "enable significant increase in speed and spectral efficiency"

DEMO SETUP

Rohde & Schwarz

DEMO SETUP

- Frequency : 7.5GHz
- Bandwidth : 500MHz
- ► Modulation : 4096 QAM

COMPANY RESTRICTED

Rohde & Schwarz

DEMO SETUP

Customized Constellation!

- ► Frequency : 7.5GHz
- ► Bandwidth : 500MHz

MultiView 🎫 Spectru	im 2	x 5G	NR :	×			•
Ref Level 0.00 dBm Fred	7.5 GHz	Mode	/nlink,	500 MHz (Capture Time 20.1	ms BWP/SS All	
Att OdB		Frame (Count	1 of 1(1) F	rame	1	عuto Demod Once ا
/IG Bypass							
Capture Buffer		G> I/Q E>	oport 01 Clm	w 5 Powe	r Spectrum		o1 Clrw
rame Start Offset : 7.980618626 ms							
				-60 dBm/			
) dBm	And a state of the second	and the second second	Sector Sector Sector Sector	.			
				: -80 dBm/			
				-100 dBm	1/Hz		
-SR. dBriddi 1 Mar - Mit - Jawisi mid - A	فيتلقن الأرار وحاري	بالمرابع الأكث الأ	بالبان والمعالية الأفعامة				
	ور ال			-120 dBm			
				-120 dBm	1/HZ		
).0 ms 2.0	01 ms/		20.1 m	ns 0 Hz	9	8.3 MHz/	983.04 MHz
Result Summary		Se	elected Frame	rame Averaged	6 Constellation	, Diagram	
Frame Results Averaged	Mean	Lim	Мах	Min 🔺	Points Measured : 8513	760	
EVM PDSCH OPSK (%)		18.50					
EVM PDSCH 160AM (%)		13.50			Junuar 1	executive produced as	annin H
EVM PDSCH 64QAM (%)		9.00					194
EVM PDSCH 256QAM (%)		4.50					• Ē
EVM PDSCH 1024QAM (%)	3.08	3.80	3.08	3.08		- 10° - 100	
ENA DECOURAGOANA (OC)				0100	1 <u>1</u>	the second	
Results for Selection BWP,		bframe #					
Results for Selection BWP, EVM AII (%)	3.02	bframe /	3.03	3.01			
Results for Selection BWP, EVM All (%) EVM Phys Channel (%)	3.02 3.08	bframe A	3.03 3.09	3.01 3.07			
Results for Selection BWP, EVM All (%) EVM Phys Channel (%) EVM Phys Signal (%)	3.02 3.08 0.73		3.03 3.09 0.77	3.01 3.07 0.70			
Results for Selection BWP, EVM All (%) EVM Phys Channel (%) EVM Phys Signal (%) Frequency Error (Hz)	3.02 3.08 0.73 30.65		3.03 3.09 0.77 30.86	3.01 3.07 0.70 30.43			
Results for Selection BWP, EVM All (%) EVM Phys Channel (%) EVM Phys Signal (%) Frequency Error (Hz) Sampling Error (Hzm)	3.02 3.08 0.73		3.03 3.09 0.77	3.01 3.07 0.70			
Results for Selection BWP, EVM All (%) EVM Phys Channel (%) EVM Phys Signal (%) Frequency Error (Hz) Sampling Error (ppm) I/Q Offset (dB)	3.02 3.08 0.73 30.65		3.03 3.09 0.77 30.86	3.01 3.07 0.70 30.43			
EVM PDSCH 4096QAM (%) Results for Selection BWP, EVM All (%) EVM Phys Channel (%) EVM Phys Signal (%) Frequency Error (Hz) Sampling Error (ppm) I/Q Offset (dB) I/Q Gain Imbalance (dB) I/Q Outdrature Error (%)	3.02 3.08 0.73 30.65		3.03 3.09 0.77 30.86	3.01 3.07 0.70 30.43 -0.01			
Results for Selection BWP, EVM All (%) EVM Phys Channel (%) EVM Phys Signal (%) Frequency Error (Hz) Sampling Error (ppm) I/Q Gfset (dB) I/Q Gain Imbalance (dB) I/Q Quadrature Error (°)	3.02 3.08 0.73 30.65 0.00		3.03 3.09 0.77 30.86 0.01	3.01 3.07 0.70 30.43 -0.01 -			
Results for Selection BWP, EVM All (%) EVM Phys Channel (%) EVM Phys Signal (%) Frequency Error (H2) Sampling Error (ppm) I/Q Offset (dB) I/Q Gain Imbalance (dB) I/Q Quadrature Error (°) OSTP (dBm)	3.02 3.08 0.73 30.65 0.00		3.03 3.09 0.77 30.86 0.01	3.01 3.07 0.70 30.43 -0.01 - - -			
Results for Selection BWP, EVM All (%) EVM Phys Channel (%) EVM Phys Signal (%) Frequency Error (H2) Sampling Error (ppm) I/Q Offset (dB) I/Q Quadrature Error (°)	3.02 3.08 0.73 30.65 0.00		3.03 3.09 0.77 30.86 0.01	3.01 3.07 0.70 30.43 -0.01 -			

OFDM DEMO SETUP

R&S®SMW200A Vector Signal Generator

Signal Generation and Analysis

R&S[®]FE110ST Frontends R&S[®]FE110SR

RF

MultiView 🎫 S	pectrum	×	OFDM	/SA	×	OFDM	VSA	12	×				
Ref Level 0.00 dBr			pture Time					Result L	ength			10	
Att 10 df YIG Bypass	B Freq 2.	0 GHz Sa	mple Rate		IHz CF	P Length		Config		M_16MHz	BW_312		
						ower Sp	ectru	ım					
0 dom - Rof. 0 000 dBm					-100	AND MARK	.m.h.	LA MOM	ile ive in a	ndwigth JAN Mad Ar	In Association and	h.t.d	
-20 dam						Under Michaels	our for he	4	41 A. A.A.	1999 0 0 0 0 0	adola vez	1 × 1	
~40 dBm					-N	dem/Hz-							MA.
and a manufacture of a state of a state of a	Le (a distriction and	Discontinue (des profes	automatica discu	-									
a0 dam					1								
0 s				20.0 n		.0 MHz						10.0	MH
5 Power vs Symbol	vs Carrie	1.		LOIDIN	in the second							•10	
123dBm -110		-100dBm	-90d	Bm	-80	Bm	-7	OdBm	-(OdBm	~50d	8m -4	adış
										1000			
0.0 sym												199.0	
2 Result Summary				1	4 C	onstellat	tion					199101	SYI
	Min	Average	Мах	Unit	•	Pilot QP1			Data QAN	164	Pilot	BPSK	
EVM All	-39.468	-39.102	-38.700	dB									
	1.063		1.161	%									
EVM Data Symbols	-39.270	-38.755	-38.206					**	* * *	* * *			
	1.088	1.154	1.229	96									
	1.088												

R&S[®]FSW Signal and Spectrum Analyzer

Other Frontends and Converters

DDD

(d) (d)

IF

Baseband B

 \checkmark

OFDM Gen.

.....

R&S®FC330ST/FC330SR

Rohde & Schwarz

SUPPORT OF WIDER RF SIGNAL BANDWIDTH & PRECISE POWER MEASUREMENTS AT D-BAND

R&S[®]SFI100A Wideband IF Generator For modulation bandwidths up to 10 GHz

> R&S[®]FE170ST/R **RF** Frontend

OVER-THE-AIR (OTA) TESTING IN D-BAND R&S®FE110/170 FRONTENDS INTEGRATED INTO OUR CHAMBERS

R&S[®]ATS1800C Compact 3GPP-compliant OTA chamber for 5G NR mmWave signals

CONCLUSIONS

Although 3GPP has laid out the schedule for specifying the next generation of cellular technology, namely 6G, details will only become available over years to come.

Early testing of components and RF modules with new physical layer parameters requires flexible software options already today.

Rohde & Schwarz is committed to support our customers 6G product development to make their ideas real.

THANK YOU!

No one can whistle a symphony. It takes a whole orchestra to play it.

Halford E. Luccock (1885-1960)

www.rohde-schwarz.com/6G

