

Measurement **Techniques**

Design Verification **Evaluation**

Instrument Selection Optimization

RF TEST: Amplifier Test Fundamentals

Martin C Lim, Application Engineer

ROHDE&SCHWARZ

Make ideas real

Contents

- ► Intro
- ► CW Measurements
- **►** Modulation

What is an amplifier

At IEST (((T)))

- ► An **amplifier** is an electronic device that can increase the <u>power</u> of a <u>signal</u>
 - Signal: a time-varying <u>voltage</u> or <u>current</u>.
- ► It is a <u>two-port</u> electronic circuit.
- ► Electric power from a <u>power supply</u> to increase the <u>amplitude</u> of a signal applied to its input terminals, producing a proportionally greater amplitude signal at its output
- An active device the takes an input signal and outputs a signal that is a copy of the input signal, but having a increased amplitude

Amplifier Types

- ► Fixed Amplifier Parameters:
 - Amplifier Class
 - Gain
 - Frequency Range
 - Output power

► 'Smart' amplifier varies parameters

Amplifier Types

Broadband; Gain Block; Log; Variable Gain; Low Noise;
 Linear; DC Coupled;

- ► Fixed Amplifier Parameters:
 - Amplifier Class
 - Gain
 - Frequency Range
 - Output power

► 'Smart' amplifier varies parameters

Power Amplifier Class

Conduction Angle

- ► Performance is a function of the amplifier class
- ▶ Defined by % time it is conducting power
- Conduction angle↑ = linearity ↑ efficiency ↓

	Conduction Angle
Class A	360°
Class B	180°
Class AB	180° to 360°
Class C	<180°

Power Amplifier Class

Efficiency

Linearity Conduction Angle

- ► Performance is a function of the amplifier class
- ▶ Defined by % time it is conducting power
- Conduction angle↑ = linearity ↑ efficiency ↓

	Efficiency	Linearity
Class A	50%	High
Class B	78%	Low
Class AB	50% - 78%	Mid
Class C	80%	Low

Low Noise Amplifier (LNA)

Characteristics

- Part of Receiver
- Low Noise: NF < 2
- Lower input power
- Operation Type: Class A

Common LNA Tests

- Gain
- Intermodulation Distortion (IMD)
- Noise Power Ratio
- Noise Figure

Power Amplifier (PA)

Characteristics

- Part of Transmitter
- High output power (Heatsink)
- Operation Class Varies

Common PA Tests

- Gain (Compression)
- ACLR
- Input/Output Match
- Power Efficiency
- Distortion (AM/AM, AM/PM)
- Load Pull
- Noise Power Ratio

RF Front-End Module

- Integrated Rx & Tx
- Several Components
 - LNA
 - PA
 - Filters
 - Switches
 - Antenna Tuner

Source: https://www.st.com/

Source: https://www.skyworksinc.com/Products/Amplifiers/SKYA21055

Why do we test?

Distortion in power amplifiers

www.circuitstoday.com

Verify Performance

- ► Does measurement match spec?
- ▶ Does part match simulation?
- ▶ Does part meet application?

Identify Distortion

- ► Measure signal quality
 - Gain Compression
 - Spectral Regrowth
 - ACLR; IMD; Harmonics
 - AM & PM Distortion
- ► Provide insight to correct issue

How do we test?

Continuous Signals

- Unmodulated
 - Continuous Wave (CW) sweep
 - Start/Stop Frequency Start Stop Step
 - Amplitude
 - Multi-Carrier CW
 - Several CW signals generated across a frequency range
- Modulated Signals
 - Real-world representation for amplifier testing,
 - Uncovers dynamic effects of amplifiers behaviors with real-signals

Non Continuous (Pulsed) Signal

- Application specific amplifiers (i.e. Radar)
- High power device

Example Test Setup

► Typically done using a VNA or Signal Generator + Spectrum Analyzer combination

Contents

- **►** Intro
- **►** CW Measurements
- **►** Modulation

Typical CW Setup

REST (((F)))

- ► Power meters offer highest accuracy
- ► NRP series is recognized in the industry as fast and accurate

Gain

Amplifiers: Increase Amplitude/Power Gain = Output Power – Input Power

Frequency response

Gain Compression, P1dB

- DC (Source) Power is limited
- Eventually we reach the limit
 - Output Pwr Fixed
 - Input Power ↑
 - Gain = Out / In
 - Gain ↓
- P1dB: 1dB deviation from linear gain

Harmonics

- Clipped Signal: Sine Wave → Square Wave
 - Sine Wave → No harmonics
 - Square Wave → ∞ Odd Harmonics

Harmonics

Intermodulation Products: IMD; IP2; IP3

Signals:

- Fundamental
- Harmonics
- Internal LO(s)

These signals can mix

Intermodulation Products:

- IP2:
 - LO + Fundamental
 - Harmonic
- IP3:
 - Harmonic + LO
 - Harmonic + Fundamental

Intermodulation Products: IMD; IP2; IP3

Intermodulation Products:

- IP2:
 - LO + Fundamental
 - Harmonic
- IP3:
 - Harmonic + LO
 - Harmonic + Fundamental

Noise Figure (LNA)

Noise Figure

- Active components increase noise floor
- How much does this amplifier add?

Power Added Efficiency (PAE)

$$\mathsf{PAE} = \frac{P_{out} - Pin}{V_{supply} * Isu_{pply}} = \frac{RF_{gain}}{P_{supply}}$$

Contents

- ► Intro
- ► CW Measurements
- ► Modulation

Modulation

Typical Modulated Setup

ATTEST (((T)))

- ► Power meters offer highest accuracy
- ► NRP series is recognized in the industry as fast and accurate

Test Setup Correction

Frequency Response (magnitude and phase vs. frequency)

- Interconnections (cable; filters; probes; and amplifiers) are not flat
- Instrument flatness is not what DUT sees.

Channel Power

$$P_{ch} = \frac{\sum_{f=Freq\ Start}^{Freq\ Stop} 10^{\frac{FFT\ Bin(f)}{10}}}{\frac{Window\ Bandwidth}{}}$$

- ► How much power are we transmitting?
- ▶ Gain
 - Output Input

Adjacent Channel Leakage Ratio, ACLR

- ► ACLR measurements determine the channel power and adjacent channel power
- Amplifiers can cause spectral regrowth to occur in adjacent channels resulting in more power
 - Important to characterize how much power an amplifier contributes to adjacent channels

General Purpose Instruments

AM/AM AM/PM

AM/AM & AM/PM

- **▶** Plots
 - X-Axis: Input power
 - Y-Axis:
 - Output Power
 - -Output Phase

- ► How my output distorted?
 - Compression
 - Memory Effect

Error Vector Magnitude

Error Vector Magnitude vs Constallation

QPSK Constellation EVM: 1% (-40 dB)

QPSK Constellation EVM: 5.5% (-25 dB)

Error Vector Magnitude

EVM Includes

- ► Phase Error
- ► Amplitude Error
- ► IQ Imbalance
- ► Time Skew
- ► Gain Imbalance

"Bathtub Curves"

Analyzer EVM 28 GHz

Two EVM?

RMS EVM

- ► Signal is down converted
- ► Equalizer can be applied
- ► Time based signal is analyzed
- ightharpoonup RMS EVM = Rx IQ Tx IQ

Demodulated EVM

- ► Follows <u>standard</u>
 - Defined equalizer
 - Defined tracking
 - Defined data/packet sized
- ► Industry accepted
 - Data can be compared internally
 - Data can be compared <u>externally</u>

Which One do we use?

RMS EVM

- Fast measurement
- Trends in with Demod EVM
- Ensures worse case EVM.

Demod EVM

- Standards Compliant
- Data can be compared to spec
- Data can be correlated externally
- Does not need original baseband IQ

General Purpose Instruments

Smart Approach

- Sweep parameters RMS EVM
 - Collect lots of data
 - Understand where issues are
 - Collect corner condition data
- Get a picture of your DUT

- Characterize Protocol EVM
- Understand what real performance is
- Collect data for external exchange.

SUMMARY / Q&A

Amplifiers:

- Low Noise Amplifier
- Power Amplifier
- Front End Module

CW Tests

- Gain
- Frequency response
- Harmonics
- Intermodulation Distortion
- Noise figure
- PAE

Modulated Tests

- Channel Power
- Adj Channel Leakage Ratio
- EVM

Measurement **Techniques**

Design Verification **Evaluation**

Instrument Selection Optimization

